Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,445 Bytes
883557f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import streamlit as st
import pandas as pd
"""
Result table of the Single Project Matching
"""
def show_single_table(selected_project_index, projects_df, result_df):
"""
TODO: Add this to preprocessing
"""
result_df['crs_3_code_list'] = result_df['crs_3_name'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
)
result_df['crs_5_code_list'] = result_df['crs_5_name'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
)
result_df['sdg_list'] = result_df['sgd_pred_code'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";"))
)
# Convert orga_abbreviation to uppercase for the selected project
result_df['orga_abbreviation'] = result_df['orga_abbreviation'].str.upper()
# Set country_flag to None if country_name is missing
result_df['country_flag'] = result_df.apply(
lambda row: None if pd.isna(row['country_name']) else row['country_flag'],
axis=1
)
sel_p_row = projects_df.iloc[[selected_project_index]]
sel_p_row['crs_3_code_list'] = sel_p_row['crs_3_name'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
)
sel_p_row['crs_5_code_list'] = sel_p_row['crs_5_name'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";")[:-1])
)
sel_p_row['sdg_list'] = sel_p_row['sgd_pred_code'].apply(
lambda x: [""] if x is None else (str(x).split(";")[:-1] if str(x).endswith(";") else str(x).split(";"))
)
# Convert orga_abbreviation to uppercase for the selected project
sel_p_row['orga_abbreviation'] = sel_p_row['orga_abbreviation'].str.upper()
# Displaye selected project and infos
st.subheader("Reference Project")
st.dataframe(
sel_p_row[["iati_id", "title_main", "orga_abbreviation", "description_main", "country_name", "country_flag", "sdg_list", "crs_3_code_list", "crs_5_code_list", "Project Link"]],
use_container_width = True,
height = 35 + 35 * len(sel_p_row),
column_config={
"iati_id": st.column_config.TextColumn(
"IATI ID",
help="IATI Project ID",
disabled=True,
width="small"
),
"orga_abbreviation": st.column_config.TextColumn(
"Organization",
help="If description not in English, description in other language provided",
disabled=True,
width="small"
),
"title_main": st.column_config.TextColumn(
"Title",
help="If title not in English, title in other language provided",
disabled=True,
width="large"
),
"description_main": st.column_config.TextColumn(
"Description",
help="If description not in English, description in other language provided",
disabled=True,
width="large"
),
"country_name": st.column_config.TextColumn(
"Country",
help="Country of project",
disabled=True,
width="small"
),
"country_flag": st.column_config.ImageColumn(
"Flag",
help="country flag",
width="small"
),
"sdg_list": st.column_config.ListColumn(
"SDG Prediction",
help="Prediction of SDG's",
width="small"
),
"crs_3_code_list": st.column_config.ListColumn(
"CRS 3",
help="CRS 3 code given by organization",
width="medium"
),
"crs_5_code_list": st.column_config.ListColumn(
"CRS 5",
help="CRS 5 code given by organization",
width="medium"
),
"Project Link": st.column_config.TextColumn(
"Project Link",
help="Link to the project",
disabled=True,
width="small"
),
},
hide_index=True,
)
# Display the similar projects of the selected project
if len(result_df) == 0:
st.write("No results found!")
else:
result_df = result_df.reset_index(drop=True)
result_df['similarity'] = (result_df['similarity'] * 100).round(4)
st.write("----------------------")
st.subheader("Similar Projects")
st.dataframe(
result_df[["similarity", "iati_id", "title_main", "orga_abbreviation", "description_main", "country_name", "country_flag", "sdg_list", "crs_3_code_list", "crs_5_code_list", "Project Link"]],
use_container_width = True,
height = 35 + 35 * len(result_df),
column_config={
"similarity": st.column_config.ProgressColumn(
"Similarity",
help="Similarity",
format=" %f %%",
min_value=0,
max_value=100,
),
"iati_id": st.column_config.TextColumn(
"IATI ID",
help="IATI Project ID",
disabled=True,
width="small"
),
"orga_abbreviation": st.column_config.TextColumn(
"Organization",
help="If description not in English, description in other language provided",
disabled=True,
width="small"
),
"title_main": st.column_config.TextColumn(
"Title",
help="If title not in English, title in other language provided",
disabled=True,
width="large"
),
"description_main": st.column_config.TextColumn(
"Description",
help="If description not in English, description in other language provided",
disabled=True,
width="large"
),
"country_name": st.column_config.TextColumn(
"Country",
help="Country of project",
disabled=True,
width="small"
),
"country_flag": st.column_config.ImageColumn(
"Flag",
help="country flag",
width="small"
),
"sdg_list": st.column_config.ListColumn(
"SDG Prediction",
help="Prediction of SDG's",
width="small"
),
"crs_3_code_list": st.column_config.ListColumn(
"CRS 3",
help="CRS 3 code given by organization",
width="medium"
),
"crs_5_code_list": st.column_config.ListColumn(
"CRS 5",
help="CRS 5 code given by organization",
width="medium"
),
},
hide_index=True,
)
|