Spaces:
GIZ
/
Running on CPU Upgrade

File size: 8,705 Bytes
22b8e0b
72e4dad
570b6e4
22b8e0b
 
 
 
 
0e0caa9
22b8e0b
8c4c590
 
 
72e4dad
4df35da
570b6e4
5bc4948
72e4dad
 
 
 
 
22b8e0b
 
 
ce1209f
22b8e0b
 
 
72e4dad
22b8e0b
 
 
ce1209f
570b6e4
1984bd1
 
 
72e4dad
369dc03
ce1209f
 
 
 
 
369dc03
47453fe
 
 
 
ce1209f
 
 
 
 
 
 
 
 
 
 
 
 
47453fe
 
 
 
 
 
 
ce1209f
 
22b8e0b
 
 
d3cc512
fb4cce0
e836bc5
72e4dad
fb4cce0
da1c31e
05064f1
da1c31e
fb4cce0
 
 
 
 
 
 
 
0e0caa9
ce1209f
5e6f5c6
0e0caa9
 
ce1209f
5bc4948
5e6f5c6
 
 
 
5bc4948
 
fb4cce0
 
 
 
 
 
 
 
0e0caa9
 
fb4cce0
 
 
 
 
 
0e0caa9
5bc4948
 
0e0caa9
5bc4948
0e0caa9
5e6f5c6
 
 
 
 
 
 
fb4cce0
 
 
e836bc5
fb4cce0
 
 
 
8c4c590
72e4dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# set path
import glob, os, sys; 
sys.path.append('../utils')

#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
from utils.sdg_classifier import sdg_classification
from utils.sdg_classifier import runSDGPreprocessingPipeline
from utils.keyword_extraction import keywordExtraction, textrank
import logging
logger = logging.getLogger(__name__)



def app():

    with st.container():
        st.markdown("<h2 style='text-align: center; color: black;'> SDG Classification and Keyphrase Extraction </h2>", unsafe_allow_html=True)
        st.write(' ')
        st.write(' ')

    with st.expander("ℹ️ - About this app", expanded=False):

        st.write(
            """     
            The *SDG Analysis* app is an easy-to-use interface built \
                in Streamlit for analyzing policy documents with respect to SDG \
                 Classification for the paragraphs/texts in the document and \
                extracting the keyphrase per SDG label - developed by GIZ Data \
                 and the Sustainable Development Solution Network. \n
            """)
        st.write("""**Document Processing:** The Uploaded/Selected document is \
            automatically cleaned and split into paragraphs with a maximum \
            length of 120 words using a Haystack preprocessing pipeline. The \
            length of 120 is an empirical value which should reflect the length \
            of a “context” and should limit the paragraph length deviation. \
            However, since we want to respect the sentence boundary the limit \
            can breach and hence this limit of 120 is tentative.  \n
            """
        st.write("""**SDG cLassification:** The application assigns paragraphs \
            to 15 of the 17 United Nations Sustainable Development Goals (SDGs).\
            SDG 16 “Peace, Justice and Strong Institutions” and SDG 17 \
            “Partnerships for the Goals” are excluded from the analysis due to \
            their broad nature which could potentially inflate the results. \
            Each paragraph is assigned to one SDG only. Again, the results are \
            displayed in a summary table including the number of the SDG, a \
            relevancy score highlighted through a green color shading, and the \
            respective text of the analyzed paragraph. Additionally, a pie \
            chart with a blue color shading is displayed which illustrates the \
            three most prominent SDGs in the document. The SDG classification \
            uses open-source training [data](https://zenodo.org/record/5550238#.Y25ICHbMJPY) \
            from [OSDG.ai](https://osdg.ai/) which is a global \
            partnerships and growing community of researchers and institutions \
            interested in the classification of research according to the \
            Sustainable Development Goals. The summary table only displays \
            paragraphs with a calculated relevancy score above 85%.  \n""")
            
        st.write("""**Keyphrase Extraction:** The application extracts 15 \
            keyphrases from the document, calculates a respective relevancy \
            score, and displays the results in a summary table. The keyphrases \
            are extracted using using [Textrank](https://github.com/summanlp/textrank)\
            which is an easy-to-use computational less expensive \
            model leveraging combination of TFIDF and Graph networks.
            """)
        st.markdown("")


    with st.container():
        if st.button("RUN SDG Analysis"):
       
            
            if 'filepath' in st.session_state:
                file_name = st.session_state['filename']
                file_path = st.session_state['filepath']
                allDocuments = runSDGPreprocessingPipeline(file_path,file_name)
                if len(allDocuments['documents']) > 100:
                    warning_msg = ": This might take sometime, please sit back and relax."
                else:
                    warning_msg = ""

                with st.spinner("Running SDG Classification{}".format(warning_msg)):

                    df, x = sdg_classification(allDocuments['documents'])
                    sdg_labels = df.SDG.unique()
                    # tfidfkeywordList = []
                    textrankkeywordlist = []
                    for label in sdg_labels:
                        sdgdata = " ".join(df[df.SDG == label].text.to_list())
                        # tfidflist_ = keywordExtraction(label,[sdgdata])
                        textranklist_ = textrank(sdgdata, words = 20)
                        tfidfkeywordList.append({'SDG':label, 'TFIDF Keywords':tfidflist_})
                        textrankkeywordlist.append({'SDG':label, 'TextRank Keywords':textranklist_})
                    tfidfkeywordsDf = pd.DataFrame(tfidfkeywordList)
                    tRkeywordsDf = pd.DataFrame(textrankkeywordlist)


                    plt.rcParams['font.size'] = 25
                    colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
                    # plot
                    fig, ax = plt.subplots()
                    ax.pie(x, colors=colors, radius=2, center=(4, 4),
                        wedgeprops={"linewidth": 1, "edgecolor": "white"}, 
                        frame=False,labels =list(x.index))
                    # fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
                    

                    st.markdown("#### Anything related to SDGs? ####")

                    c4, c5, c6 = st.columns([2, 2, 2])

                    with c5:
                        st.pyplot(fig)
                    
                    st.markdown("##### What keywords are present under SDG classified text? #####")
                    st.write("TFIDF BASED")

                    c1, c2, c3 = st.columns([1, 10, 1])
                    with c2:
                        st.table(tfidfkeywordsDf)

                    st.write("TextRank BASED")

                    c11, c12, c13 = st.columns([1, 10, 1])
                    with c12:
                        st.table(tRkeywordsDf)    
                    c7, c8, c9 = st.columns([1, 10, 1])
                    with c8:
                        st.table(df)
            else:
                st.info("🤔 No document found, please try to upload it at the sidebar!")
                logging.warning("Terminated as no document provided")




#     1. Keyword heatmap \n
 #               2. SDG Classification for the paragraphs/texts in the document
 #       
    
    # with st.container():
    #     if 'docs' in st.session_state:
    #         docs = st.session_state['docs']
    #         docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
    #         # paraList = st.session_state['paraList']
    #         logging.info("keybert")
    #         with st.spinner("Running Key bert"):

    #             kw_model = load_keyBert()

    #             keywords = kw_model.extract_keywords(
    #             all_text,
    #             keyphrase_ngram_range=(1, 3),
    #             use_mmr=True,
    #             stop_words="english",
    #             top_n=10,
    #             diversity=0.7,
    #             )

    #             st.markdown("## 🎈 What is my document about?")
            
    #             df = (
    #                 DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    #                 .sort_values(by="Relevancy", ascending=False)
    #                 .reset_index(drop=True)
    #             )
    #             df1 = (
    #                 DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    #                 .sort_values(by="Relevancy", ascending=False)
    #                 .reset_index(drop=True)
    #             )
    #             df.index += 1

    #             # Add styling
    #             cmGreen = sns.light_palette("green", as_cmap=True)
    #             cmRed = sns.light_palette("red", as_cmap=True)
    #             df = df.style.background_gradient(
    #                 cmap=cmGreen,
    #                 subset=[
    #                     "Relevancy",
    #                 ],
    #             )

    #             c1, c2, c3 = st.columns([1, 3, 1])

    #             format_dictionary = {
    #                 "Relevancy": "{:.1%}",
    #             }

    #             df = df.format(format_dictionary)

    #             with c2:
    #  
    #               st.table(df)