Spaces:
GIZ
/
Running on CPU Upgrade

File size: 4,276 Bytes
22b8e0b
72e4dad
570b6e4
22b8e0b
 
2caced7
22b8e0b
 
 
 
 
 
8c4c590
 
 
72e4dad
570b6e4
 
22b8e0b
 
72e4dad
 
 
 
 
22b8e0b
 
 
 
 
 
 
72e4dad
22b8e0b
 
 
570b6e4
 
 
 
72e4dad
22b8e0b
 
 
e1616b2
72e4dad
4a6159c
 
72e4dad
22b8e0b
4a6159c
22b8e0b
 
 
 
 
 
e1616b2
 
72e4dad
 
 
2d65499
22b8e0b
a48c117
22b8e0b
a48c117
1346116
a48c117
593bc97
8c4c590
72e4dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# set path
import glob, os, sys; 
sys.path.append('../utils')

#import helper


#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
from utils.sdg_classifier import sdg_classification
from utils.sdg_classifier import runSDGPreprocessingPipeline
import tempfile
import sqlite3
import logging
logger = logging.getLogger(__name__)



def app():

    with st.container():
        st.markdown("<h1 style='text-align: center; color: black;'> SDSN x GIZ Policy Action Tracking v0.1</h1>", unsafe_allow_html=True)
        st.write(' ')
        st.write(' ')

    with st.expander("ℹ️ - About this app", expanded=False):

        st.write(
            """     
            The *Analyse Policy Document* app is an easy-to-use interface built \
                in Streamlit for analyzing policy documents with respect to SDG \
                 Classification for the paragraphs/texts in the document - \
                developed by GIZ Data and the Sustainable Development Solution Network. \n
            """)
        st.markdown("")


    with st.container():       
            
        if 'filepath' in st.session_state:
            paraList = runSDGPreprocessingPipeline()
            with st.spinner("Running SDG"):

                df, x = sdg_classification(paraList)

                plt.rcParams['font.size'] = 25
                colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
                # plot
                fig, ax = plt.subplots()
                ax.pie(x, colors=colors, radius=2, center=(4, 4),
                    wedgeprops={"linewidth": 1, "edgecolor": "white"}, 
                    frame=False,labels =list(x.index))
                # fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
                st.markdown("#### Anything related to SDGs? ####")

                c4, c5, c6 = st.columns([2, 2, 2])

                with c5:
                    st.pyplot(fig)
                    
                c7, c8, c9 = st.columns([1, 10, 1])
                with c8:
                    st.table(df)


#     1. Keyword heatmap \n
 #               2. SDG Classification for the paragraphs/texts in the document
 #       
    
    # with st.container():
    #     if 'docs' in st.session_state:
    #         docs = st.session_state['docs']
    #         docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
    #         # paraList = st.session_state['paraList']
    #         logging.info("keybert")
    #         with st.spinner("Running Key bert"):

    #             kw_model = load_keyBert()

    #             keywords = kw_model.extract_keywords(
    #             all_text,
    #             keyphrase_ngram_range=(1, 3),
    #             use_mmr=True,
    #             stop_words="english",
    #             top_n=10,
    #             diversity=0.7,
    #             )

    #             st.markdown("## 🎈 What is my document about?")
            
    #             df = (
    #                 DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    #                 .sort_values(by="Relevancy", ascending=False)
    #                 .reset_index(drop=True)
    #             )
    #             df1 = (
    #                 DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
    #                 .sort_values(by="Relevancy", ascending=False)
    #                 .reset_index(drop=True)
    #             )
    #             df.index += 1

    #             # Add styling
    #             cmGreen = sns.light_palette("green", as_cmap=True)
    #             cmRed = sns.light_palette("red", as_cmap=True)
    #             df = df.style.background_gradient(
    #                 cmap=cmGreen,
    #                 subset=[
    #                     "Relevancy",
    #                 ],
    #             )

    #             c1, c2, c3 = st.columns([1, 3, 1])

    #             format_dictionary = {
    #                 "Relevancy": "{:.1%}",
    #             }

    #             df = df.format(format_dictionary)

    #             with c2:
    #  
    #               st.table(df)