Spaces:
GIZ
/
Running on CPU Upgrade

File size: 6,759 Bytes
4a6159c
7de7bf4
5267e7c
fc140bc
4a6159c
40debb1
685552c
fc140bc
f59362a
570b6e4
685552c
 
 
 
40debb1
f59362a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb4cce0
f59362a
4a6159c
 
fc140bc
 
685552c
 
4a6159c
fc140bc
 
 
 
 
 
 
4a6159c
 
f59362a
fc140bc
 
 
 
 
f59362a
fc140bc
 
4a6159c
f59362a
fc140bc
596accd
fc140bc
 
685552c
fb4cce0
fc140bc
f59362a
4a6159c
 
 
 
 
 
 
7de7bf4
 
 
f59362a
 
 
 
4a6159c
 
 
 
 
 
 
 
f9949bb
f59362a
 
 
 
 
 
 
fc140bc
1a4b146
048a702
1a4b146
685552c
1a4b146
3f0df44
570b6e4
4a6159c
 
 
fc140bc
 
4a6159c
40debb1
 
 
3a3fd67
40debb1
aa8662e
fc140bc
98746bf
8ee6037
4a6159c
 
 
fc140bc
 
 
 
 
4a6159c
 
 
048a702
f9949bb
048a702
 
685552c
 
 
fc140bc
 
 
 
 
 
685552c
048a702
2caced7
 
 
 
 
 
 
4a6159c
685552c
4a6159c
 
499fe35
e4c96ff
 
fc140bc
4a6159c
1d3978a
ce1209f
 
4a6159c
685552c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from haystack.nodes import TransformersDocumentClassifier
from haystack.schema import Document
from typing import List, Tuple
from typing_extensions import Literal
import logging
import pandas as pd
from pandas import DataFrame, Series
from utils.checkconfig import getconfig
from utils.streamlitcheck import check_streamlit
from utils.preprocessing import processingpipeline
try:
    import streamlit as st
except ImportError:
    logging.info("Streamlit not installed")

## Labels dictionary ###
_lab_dict = {0: 'no_cat',
            1:'SDG 1 - No poverty',
            2:'SDG 2 - Zero hunger',
            3:'SDG 3 - Good health and well-being',
            4:'SDG 4 - Quality education',
            5:'SDG 5 - Gender equality',
            6:'SDG 6 - Clean water and sanitation',
            7:'SDG 7 - Affordable and clean energy',
            8:'SDG 8 - Decent work and economic growth', 
            9:'SDG 9 - Industry, Innovation and Infrastructure',
            10:'SDG 10 - Reduced inequality',
            11:'SDG 11 - Sustainable cities and communities',
            12:'SDG 12 - Responsible consumption and production',
            13:'SDG 13 - Climate action',
            14:'SDG 14 - Life below water',
            15:'SDG 15 - Life on land',
            16:'SDG 16 - Peace, justice and strong institutions',
            17:'SDG 17 - Partnership for the goals',}

@st.cache(allow_output_mutation=True)
def load_sdgClassifier(configFile = None, classifier_name = None):
    """
    loads the document classifier using haystack, where the name/path of model
    in HF-hub as string is used to fetch the model object.Either configfile or 
    model should be passed.
    1. https://docs.haystack.deepset.ai/reference/document-classifier-api
    2. https://docs.haystack.deepset.ai/docs/document_classifier

    Params
    --------
    configFile: config file from which to read the model name
    docClassifierModel: if modelname is passed, it takes a priority if not \
    found then will look for configfile, else raise error.


    Return: document classifier model
    """
    if not classifier_name:
        if not configFile:
            logging.warning("Pass either model name or config file")
            return
        else:
            config = getconfig(configFile)
            classifier_name = config.get('sdg','MODEL')
    
    logging.info("Loading classifier")    
    doc_classifier = TransformersDocumentClassifier(
                        model_name_or_path=classifier_name,
                        task="text-classification")

    return doc_classifier
        

@st.cache(allow_output_mutation=True)
def sdg_classification(haystackdoc:List[Document],
                        threshold:float, classifiermodel= None)->Tuple[DataFrame,Series]:
    """
    Text-Classification on the list of texts provided. Classifier provides the 
    most appropriate label for each text. these labels are in terms of if text 
    belongs to which particular Sustainable Devleopment Goal (SDG).

    Params
    ---------
    haystackdoc: List of haystack Documents. The output of Preprocessing Pipeline 
    contains the list of paragraphs in different format,here the list of 
    Haystack Documents is used.
    threshold: threshold value for the model to keep the results from classifier
    classifiermodel: you can pass the classifier model directly, however in case of
    streamlit avoid it.


    Returns
    ----------
    df: Dataframe with two columns['SDG:int', 'text']
    x: Series object with the unique SDG covered in the document uploaded and 
    the number of times it is covered/discussed/count_of_paragraphs. 

    """
    logging.info("Working on SDG Classification")
    if not classifiermodel:
        if check_streamlit:
            classifiermodel = st.session_state['sdg_classifier']
        else:
            logging.warning("No streamlit envinornment found, Pass the classifier")
            return
    
    results = classifiermodel.predict(haystackdoc)


    labels_= [(l.meta['classification']['label'],
            l.meta['classification']['score'],l.content,) for l in results]

    df = DataFrame(labels_, columns=["SDG","Relevancy","text"])
    
    df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)  
    df.index += 1
    df =df[df['Relevancy']>threshold]

    # creating the dataframe for value counts of SDG, along with 'title' of SDGs
    x = df['SDG'].value_counts()
    x = x.rename('count')
    x = x.rename_axis('SDG').reset_index()
    x["SDG"] = pd.to_numeric(x["SDG"])
    x = x.sort_values(by=['count'])
    x['SDG_name'] = x['SDG'].apply(lambda x: _lab_dict[x])
    x['SDG_Num'] = x['SDG'].apply(lambda x: "SDG "+str(x))

    df['SDG'] = pd.to_numeric(df['SDG'])
    df = df.sort_values('SDG')
    
    return df, x

def runSDGPreprocessingPipeline(filePath, fileName, 
            split_by: Literal["sentence", "word"] = 'sentence',
            split_respect_sentence_boundary = False,
            split_length:int = 2, split_overlap = 0,
            removePunc = False)->List[Document]:
    """
    creates the pipeline and runs the preprocessing pipeline, 
    the params for pipeline are fetched from paramconfig

    Params
    ------------

    file_name: filename, in case of streamlit application use 
    st.session_state['filename']
    file_path: filepath, in case of streamlit application use 
    removePunc: to remove all Punctuation including ',' and '.' or not
    split_by: document splitting strategy either as word or sentence
    split_length: when synthetically creating the paragrpahs from document,
                    it defines the length of paragraph.
    split_respect_sentence_boundary: Used when using 'word' strategy for 
    splititng of text.


    Return
    --------------
    List[Document]: When preprocessing pipeline is run, the output dictionary 
    has four objects. For the Haysatck implementation of SDG classification we, 
    need to use the List of Haystack Document, which can be fetched by 
    key = 'documents' on output.

    """

    sdg_processing_pipeline = processingpipeline()

    output_sdg_pre = sdg_processing_pipeline.run(file_paths = filePath, 
                            params= {"FileConverter": {"file_path": filePath, \
                                        "file_name": fileName}, 
                                     "UdfPreProcessor": {"removePunc": removePunc, \
                                            "split_by": split_by, \
                                            "split_length":split_length,\
                                            "split_overlap": split_overlap, \
        "split_respect_sentence_boundary":split_respect_sentence_boundary}})
    
    return output_sdg_pre