File size: 24,744 Bytes
22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b 8c4c590 22b8e0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
# set path
import glob, os, sys; sys.path.append('../udfPreprocess')
#import helper
import udfPreprocess.docPreprocessing as pre
import udfPreprocess.cleaning as clean
#import needed libraries
import seaborn as sns
from pandas import DataFrame
from sentence_transformers import SentenceTransformer, CrossEncoder, util
# from keybert import KeyBERT
from transformers import pipeline
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import pandas as pd
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
import tempfile
import sqlite3
def app():
with st.container():
st.markdown("<h1 style='text-align: center; \
color: black;'> Keyword Search</h1>",
unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=True):
st.write(
"""
The *Keyword Search* app is an easy-to-use interface \
built in Streamlit for doing keyword search in \
policy document - developed by GIZ Data and the \
Sustainable Development Solution Network.
"""
)
st.markdown("")
st.markdown("")
st.markdown("### 📌 Step One: Upload document ### ")
with st.container():
def bm25_tokenizer(text):
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
tokenized_doc.append(token)
return tokenized_doc
def bm25TokenizeDoc(paraList):
tokenized_corpus = []
for passage in tqdm(paraList):
if len(passage.split()) >256:
temp = " ".join(passage.split()[:256])
tokenized_corpus.append(bm25_tokenizer(temp))
temp = " ".join(passage.split()[256:])
tokenized_corpus.append(bm25_tokenizer(temp))
else:
tokenized_corpus.append(bm25_tokenizer(passage))
return tokenized_corpus
def search(keyword):
##### BM25 search (lexical search) #####
bm25_scores = document_bm25.get_scores(bm25_tokenizer(keyword))
top_n = np.argpartition(bm25_scores, -10)[-10:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
#query = "Does document contain {} issues ?".format(keyword)
question_embedding = bi_encoder.encode(keyword, convert_to_tensor=True)
hits = util.semantic_search(question_embedding, document_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
#cross_inp = [[query, paraList[hit['corpus_id']]] for hit in hits]
#cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
#for idx in range(len(cross_scores)):
# hits[idx]['cross-score'] = cross_scores[idx]
return bm25_hits, hits
def show_results(keywordList):
document = docx.Document()
document.add_heading('Document name:{}'.format(file_name), 2)
section = document.sections[0]
# Calling the footer
footer = section.footer
# Calling the paragraph already present in
# the footer section
footer_para = footer.paragraphs[0]
font_styles = document.styles
font_charstyle = font_styles.add_style('CommentsStyle', WD_STYLE_TYPE.CHARACTER)
font_object = font_charstyle.font
font_object.size = Pt(7)
# Adding the centered zoned footer
footer_para.add_run('''\tPowered by GIZ Data and the Sustainable Development Solution Network hosted at Hugging-Face spaces: https://huggingface.co/spaces/ppsingh/streamlit_dev''', style='CommentsStyle')
document.add_heading('Your Seacrhed for {}'.format(keywordList), level=1)
for keyword in keywordList:
st.write("Results for Query: {}".format(keyword))
para = document.add_paragraph().add_run("Results for Query: {}".format(keyword))
para.font.size = Pt(12)
bm25_hits, hits = search(keyword)
st.markdown("""
We will provide with 2 kind of results. The 'lexical search' and the semantic search.
""")
# In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder)
st.markdown("Top few lexical search (BM25) hits")
document.add_paragraph("Top few lexical search (BM25) hits")
for hit in bm25_hits[0:5]:
if hit['score'] > 0.00:
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# st.table(bm25_hits[0:3])
st.markdown("\n-------------------------\n")
st.markdown("Top few Bi-Encoder Retrieval hits")
document.add_paragraph("\n-------------------------\n")
document.add_paragraph("Top few Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
for hit in hits[0:5]:
# if hit['score'] > 0.45:
st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
document.add_paragraph("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
#st.table(hits[0:3]
document.save('demo.docx')
with open("demo.docx", "rb") as file:
btn = st.download_button(
label="Download file",
data=file,
file_name="demo.docx",
mime="txt/docx"
)
@st.cache(allow_output_mutation=True)
def load_sentenceTransformer(name):
return SentenceTransformer(name)
docs = None
# asking user for either upload or select existing doc
choice = st.radio(label = 'Select the Document',
help = 'You can upload the document \
or else you can try a example document',
options = ('Upload Document', 'Try Example'),
horizontal = True)
if choice == 'Upload Document':
uploaded_file = st.file_uploader('Upload the File', type=['pdf', 'docx', 'txt'])
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(mode="wb") as temp:
bytes_data = uploaded_file.getvalue()
temp.write(bytes_data)
st.write("Uploaded Filename: ", uploaded_file.name)
file_name = uploaded_file.name
file_path = temp.name
docs = pre.load_document(file_path, file_name)
haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
else:
# listing the options
option = st.selectbox('Select the example document',
('South Africa:Low Emission strategy',
'Ethiopia: 10 Year Development Plan'))
if option is 'South Africa:Low Emission strategy':
file_name = file_path = 'sample/South Africa_s Low Emission Development Strategy.txt'
st.write("Selected document:", file_name.split('/')[1])
# with open('sample/South Africa_s Low Emission Development Strategy.txt') as dfile:
# file = open('sample/South Africa_s Low Emission Development Strategy.txt', 'wb')
else:
# with open('sample/Ethiopia_s_2021_10 Year Development Plan.txt') as dfile:
file_name = file_path = 'sample/Ethiopia_s_2021_10 Year Development Plan.txt'
st.write("Selected document:", file_name.split('/')[1])
if option is not None:
docs = pre.load_document(file_path,file_name)
haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs)
if docs is not None:
bi_encoder = load_sentenceTransformer('msmarco-distilbert-cos-v5') # multi-qa-MiniLM-L6-cos-v1
bi_encoder.max_seq_length = 64 #Truncate long passages to 256 tokens
top_k = 32
document_embeddings = bi_encoder.encode(paraList, convert_to_tensor=True, show_progress_bar=False)
tokenized_corpus = bm25TokenizeDoc(paraList)
document_bm25 = BM25Okapi(tokenized_corpus)
keywordList = None
col1, col2 = st.columns(2)
with col1:
if st.button('Climate Change Keyword Search'):
keywordList = ['extreme weather', 'floods', 'droughts']
# show_results(keywordList)
with col2:
if st.button('Gender Keywords Search'):
keywordList = ['Gender', 'Women empowernment']
# show_results(keywordList)
keyword = st.text_input("Please enter here \
what you want to search, \
we will look for similar context \
in the document.",
value="",)
if st.button("Find them."):
keywordList = [keyword]
if keywordList is not None:
show_results(keywordList)
# @st.cache(allow_output_mutation=True)
# def load_sentenceTransformer(name):
# return SentenceTransformer(name)
# bi_encoder = load_sentenceTransformer('msmarco-distilbert-cos-v5') # multi-qa-MiniLM-L6-cos-v1
# bi_encoder.max_seq_length = 64 #Truncate long passages to 256 tokens
# top_k = 32
# #@st.cache(allow_output_mutation=True)
# #def load_crossEncoder(name):
# # return CrossEncoder(name)
# # cross_encoder = load_crossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# document_embeddings = bi_encoder.encode(paraList, convert_to_tensor=True, show_progress_bar=False)
# def bm25_tokenizer(text):
# tokenized_doc = []
# for token in text.lower().split():
# token = token.strip(string.punctuation)
# if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
# tokenized_doc.append(token)
# return tokenized_doc
# def bm25TokenizeDoc(paraList):
# tokenized_corpus = []
# for passage in tqdm(paraList):
# if len(passage.split()) >256:
# temp = " ".join(passage.split()[:256])
# tokenized_corpus.append(bm25_tokenizer(temp))
# temp = " ".join(passage.split()[256:])
# tokenized_corpus.append(bm25_tokenizer(temp))
# else:
# tokenized_corpus.append(bm25_tokenizer(passage))
# return tokenized_corpus
# tokenized_corpus = bm25TokenizeDoc(paraList)
# document_bm25 = BM25Okapi(tokenized_corpus)
# # def search(keyword):
# # ##### BM25 search (lexical search) #####
# # bm25_scores = document_bm25.get_scores(bm25_tokenizer(keyword))
# top_n = np.argpartition(bm25_scores, -10)[-10:]
# bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
# bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
# ##### Sematic Search #####
# # Encode the query using the bi-encoder and find potentially relevant passages
# #query = "Does document contain {} issues ?".format(keyword)
# question_embedding = bi_encoder.encode(keyword, convert_to_tensor=True)
# hits = util.semantic_search(question_embedding, document_embeddings, top_k=top_k)
# hits = hits[0] # Get the hits for the first query
# ##### Re-Ranking #####
# # Now, score all retrieved passages with the cross_encoder
# #cross_inp = [[query, paraList[hit['corpus_id']]] for hit in hits]
# #cross_scores = cross_encoder.predict(cross_inp)
# # Sort results by the cross-encoder scores
# #for idx in range(len(cross_scores)):
# # hits[idx]['cross-score'] = cross_scores[idx]
# return bm25_hits, hits
# def show_results(keywordList):
# for keyword in keywordList:
# bm25_hits, hits = search(keyword)
# st.markdown("""
# We will provide with 2 kind of results. The 'lexical search' and the semantic search.
# """)
# # In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder)
# st.markdown("Top few lexical search (BM25) hits")
# for hit in bm25_hits[0:5]:
# if hit['score'] > 0.00:
# st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# # st.table(bm25_hits[0:3])
# st.markdown("\n-------------------------\n")
# st.markdown("Top few Bi-Encoder Retrieval hits")
# hits = sorted(hits, key=lambda x: x['score'], reverse=True)
# for hit in hits[0:5]:
# # if hit['score'] > 0.45:
# st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# #st.table(hits[0:3]
# # if docs is not None:
# # col1, col2 = st.columns(2)
# # with col1:
# # if st.button('Gender Keywords Search'):
# # keywordList = ['Gender Equality', 'Women empowernment']
# # show_results(keywordList)
# # with col2:
# # if st.button('Climate Change Keyword Search'):
# # keywordList = ['extreme weather', 'floods', 'droughts']
# # show_results(keywordList)
# # keyword = st.text_input("Please enter here \
# # what you want to search, \
# # we will look for similar context \
# # in the document.",
# # value="",)
# # if st.button("Find them."):
# # show_results([keyword])
# choice1 = st.radio(label = 'Keyword Search',
# help = 'Search \
# or else you can try a example document',
# options = ('Enter your own Query', 'Try Example'),
# horizontal = True)
# if choice1 == 'Enter your own Query':
# keyword = st.text_input("Please enter here \
# what you want to search, \
# we will look for similar context \
# in the document.",
# value="",)
# else:
# option1 = st.selectbox('Select the Predefined word cluster',
# ('Gender:[Gender Equality, Women empowernment]',
# 'Climate change:[extreme weather, floods, droughts]',
# ))
# if option1 == 'Gender:[Gender Equality, Women empowernment]':
# keywordList = ['Gender Equality', 'Women empowernment']
# else:
# keywordList = ['extreme weather', 'floods', 'droughts']
# option1 = st.selectbox('Select the Predefined word cluster',
# ('Gender:[Gender Equality, Women empowernment]',
# 'Climate change:[extreme weather, floods, droughts]',
# # 'Enter your Own Keyword Query'))
# if option1 == 'Enter your Own Keyword Query':
# keyword = st.text_input("Please enter here \
# what you want to search, \
# we will look for similar context \
# in the document.",
# value="",)
# elif option1 == 'Gender:[Gender Equality, Women empowernment]':
# keywordList = ['Gender Equality', 'Women empowernment']
# elif option1 == 'Climate change:[extreme weather, floods, droughts]':
# keywordList = ['extreme weather', 'floods', 'droughts']
# st.markdown("### 📌 Step Two: Search Keyword in Document ### ")
# @st.cache(allow_output_mutation=True)
# def load_sentenceTransformer(name):
# return SentenceTransformer(name)
# bi_encoder = load_sentenceTransformer('msmarco-distilbert-cos-v5') # multi-qa-MiniLM-L6-cos-v1
# bi_encoder.max_seq_length = 64 #Truncate long passages to 256 tokens
# top_k = 32
# #@st.cache(allow_output_mutation=True)
# #def load_crossEncoder(name):
# # return CrossEncoder(name)
# # cross_encoder = load_crossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# document_embeddings = bi_encoder.encode(paraList, convert_to_tensor=True, show_progress_bar=False)
# def bm25_tokenizer(text):
# tokenized_doc = []
# for token in text.lower().split():
# token = token.strip(string.punctuation)
# if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
# tokenized_doc.append(token)
# return tokenized_doc
# def bm25TokenizeDoc(paraList):
# tokenized_corpus = []
# for passage in tqdm(paraList):
# if len(passage.split()) >256:
# temp = " ".join(passage.split()[:256])
# tokenized_corpus.append(bm25_tokenizer(temp))
# temp = " ".join(passage.split()[256:])
# tokenized_corpus.append(bm25_tokenizer(temp))
# else:
# tokenized_corpus.append(bm25_tokenizer(passage))
# return tokenized_corpus
# tokenized_corpus = bm25TokenizeDoc(paraList)
# document_bm25 = BM25Okapi(tokenized_corpus)
# def search(keyword):
# ##### BM25 search (lexical search) #####
# bm25_scores = document_bm25.get_scores(bm25_tokenizer(keyword))
# top_n = np.argpartition(bm25_scores, -10)[-10:]
# bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
# bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
# ##### Sematic Search #####
# # Encode the query using the bi-encoder and find potentially relevant passages
# #query = "Does document contain {} issues ?".format(keyword)
# question_embedding = bi_encoder.encode(keyword, convert_to_tensor=True)
# hits = util.semantic_search(question_embedding, document_embeddings, top_k=top_k)
# hits = hits[0] # Get the hits for the first query
# ##### Re-Ranking #####
# # Now, score all retrieved passages with the cross_encoder
# #cross_inp = [[query, paraList[hit['corpus_id']]] for hit in hits]
# #cross_scores = cross_encoder.predict(cross_inp)
# # Sort results by the cross-encoder scores
# #for idx in range(len(cross_scores)):
# # hits[idx]['cross-score'] = cross_scores[idx]
# return bm25_hits, hits
# def show_results(keywordList):
# for keyword in keywordList:
# bm25_hits, hits = search(keyword)
# st.markdown("""
# We will provide with 2 kind of results. The 'lexical search' and the semantic search.
# """)
# # In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder)
# st.markdown("Top few lexical search (BM25) hits")
# for hit in bm25_hits[0:5]:
# if hit['score'] > 0.00:
# st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# # st.table(bm25_hits[0:3])
# st.markdown("\n-------------------------\n")
# st.markdown("Top few Bi-Encoder Retrieval hits")
# hits = sorted(hits, key=lambda x: x['score'], reverse=True)
# for hit in hits[0:5]:
# # if hit['score'] > 0.45:
# st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# #st.table(hits[0:3]
# # if st.button("Find them."):
# # bm25_hits, hits = search(keyword)
# # st.markdown("""
# # We will provide with 2 kind of results. The 'lexical search' and the semantic search.
# # """)
# # # In the semantic search part we provide two kind of results one with only Retriever (Bi-Encoder) and other the ReRanker (Cross Encoder)
# # st.markdown("Top few lexical search (BM25) hits")
# # for hit in bm25_hits[0:5]:
# # if hit['score'] > 0.00:
# # st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# # # st.table(bm25_hits[0:3])
# # st.markdown("\n-------------------------\n")
# # st.markdown("Top few Bi-Encoder Retrieval hits")
# # hits = sorted(hits, key=lambda x: x['score'], reverse=True)
# # for hit in hits[0:5]:
# # # if hit['score'] > 0.45:
# # st.write("\t Score: {:.3f}: \t{}".format(hit['score'], paraList[hit['corpus_id']].replace("\n", " ")))
# # #st.table(hits[0:3]
|