File size: 11,835 Bytes
a4bf4e8 4a20529 49a314a 4a20529 cc5c327 a4bf4e8 cc5c327 a4bf4e8 49a314a 4a20529 78f3ebc 49a314a cc5c327 4a20529 3d34c75 4a20529 49a314a cc5c327 4a20529 49a314a cc5c327 4a20529 49a314a 4a20529 49a314a cc5c327 4a20529 3d34c75 49a314a 4a20529 cc5c327 4a20529 3d34c75 4a20529 1d3978a 4a20529 cc5c327 4a20529 cc5c327 4a20529 3d34c75 2bccbcb a4bf4e8 1d3978a 49a314a cc5c327 a4bf4e8 cc5c327 a4bf4e8 cc5c327 1d3978a cc5c327 a4bf4e8 cc5c327 1d3978a cc5c327 1d3978a a4bf4e8 1d3978a a4bf4e8 1d3978a a4bf4e8 1d3978a 2bccbcb 1d3978a a4bf4e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
from haystack.nodes import TfidfRetriever, TransformersQueryClassifier
from haystack.nodes import EmbeddingRetriever, FARMReader
from haystack.nodes.base import BaseComponent
from haystack.document_stores import InMemoryDocumentStore
import configparser
import spacy
import re
from spacy.matcher import Matcher
import streamlit as st
from markdown import markdown
from annotated_text import annotation
from haystack.schema import Document
from typing import List, Text
from utils.preprocessing import processingpipeline
from haystack.pipelines import Pipeline
config = configparser.ConfigParser()
config.read_file(open('paramconfig.cfg'))
def tokenize_lexical_query(query:str)-> List[str]:
"""
Removes the stop words from query and returns the list of important keywords
in query. For the lexical search the relevent paragraphs in document are
retreived using TfIDFretreiver from Haystack. However to highlight these
keywords we need the tokenized form of query.
Params
--------
query: string which represents either list of keywords user is looking for
or a query in form of Question.
Return
-----------
token_list: list of important keywords in the query.
"""
nlp = spacy.load("en_core_web_sm")
token_list = [token.text.lower() for token in nlp(query)
if not (token.is_stop or token.is_punct)]
return token_list
def runSpacyMatcher(token_list:List[str], document:Text):
"""
Using the spacy in backend finds the keywords in the document using the
Matcher class from spacy. We can alternatively use the regex, but spacy
finds all keywords in serialized manner which helps in annotation of answers.
Params
-------
token_list: this is token list which tokenize_lexical_query function returns
document: text in which we need to find the tokens
Return
--------
matches: List of [start_index, end_index] in the spacydoc(at word level not
character) for the keywords in token list.
spacydoc: the keyword index in the spacydoc are at word level and not character,
therefore to allow the annotator to work seamlessly we return the spacydoc.
"""
nlp = spacy.load("en_core_web_sm")
spacydoc = nlp(document)
matcher = Matcher(nlp.vocab)
token_pattern = [[{"LOWER":token}] for token in token_list]
matcher.add(",".join(token_list), token_pattern)
spacymatches = matcher(spacydoc)
# getting start and end index in spacydoc so that annotator can work seamlessly
matches = []
for match_id, start, end in spacymatches:
matches = matches + [[start, end]]
return matches, spacydoc
def runRegexMatcher(token_list:List[str], document:Text):
"""
Using the regex in backend finds the keywords in the document.
Params
-------
token_list: this is token list which tokenize_lexical_query function returns
document: text in which we need to find the tokens
Return
--------
matches: List of [start_index, end_index] in the document for the keywords
in token list at character level.
document: the keyword index returned by regex are at character level,
therefore to allow the annotator to work seamlessly we return the text back.
"""
matches = []
for token in token_list:
matches = (matches +
[[val.start(), val.start() +
len(token)] for val in re.finditer(token, document)])
return matches, document
def searchAnnotator(matches: List[List[int]], document):
"""
Annotates the text in the document defined by list of [start index, end index]
Example: "How are you today", if document type is text, matches = [[0,3]]
will give answer = "How", however in case we used the spacy matcher then the
matches = [[0,3]] will give answer = "How are you". However if spacy is used
to find "How" then the matches = [[0,1]] for the string defined above.
"""
start = 0
annotated_text = ""
for match in matches:
start_idx = match[0]
end_idx = match[1]
annotated_text = (annotated_text + document[start:start_idx].text
+ str(annotation(body=document[start_idx:end_idx].text,
label="ANSWER", background="#964448", color='#ffffff')))
start = end_idx
annotated_text = annotated_text + document[end_idx:].text
st.write(
markdown(annotated_text),
unsafe_allow_html=True,
)
def lexical_search(query:Text,documents:List[Document]):
"""
Performs the Lexical search on the List of haystack documents which is
returned by preprocessing Pipeline.
"""
document_store = InMemoryDocumentStore()
document_store.write_documents(documents)
# Haystack Retriever works with document stores only.
retriever = TfidfRetriever(document_store)
results = retriever.retrieve(query=query,
top_k= int(config.get('lexical_search','TOP_K')))
query_tokens = tokenize_lexical_query(query)
for count, result in enumerate(results):
# if result.content != "":
matches, doc = runSpacyMatcher(query_tokens,result.content)
if len(matches) != 0:
st.write("Result {}".format(count+1))
searchAnnotator(matches, doc)
def runLexicalPreprocessingPipeline()->List[Document]:
"""
creates the pipeline and runs the preprocessing pipeline,
the params for pipeline are fetched from paramconfig
Return
--------------
List[Document]: When preprocessing pipeline is run, the output dictionary
has four objects. For the lexicaal search using TFIDFRetriever we
need to use the List of Haystack Document, which can be fetched by
key = 'documents' on output.
"""
file_path = st.session_state['filepath']
file_name = st.session_state['filename']
lexical_processing_pipeline = processingpipeline()
split_by = config.get('lexical_search','SPLIT_BY')
split_length = int(config.get('lexical_search','SPLIT_LENGTH'))
split_overlap = int(config.get('lexical_search','SPLIT_OVERLAP'))
output_lexical_pre = lexical_processing_pipeline.run(file_paths = file_path,
params= {"FileConverter": {"file_path": file_path, \
"file_name": file_name},
"UdfPreProcessor": {"removePunc": False, \
"split_by": split_by, \
"split_length":split_length,\
"split_overlap": split_overlap}})
return output_lexical_pre['documents']
def runSemanticPreprocessingPipeline()->List[Document]:
"""
creates the pipeline and runs the preprocessing pipeline,
the params for pipeline are fetched from paramconfig
Return
--------------
List[Document]: When preprocessing pipeline is run, the output dictionary
has four objects. For the Haysatck implementation of semantic search we,
need to use the List of Haystack Document, which can be fetched by
key = 'documents' on output.
"""
file_path = st.session_state['filepath']
file_name = st.session_state['filename']
semantic_processing_pipeline = processingpipeline()
split_by = config.get('semantic_search','SPLIT_BY')
split_length = int(config.get('semantic_search','SPLIT_LENGTH'))
split_overlap = int(config.get('semantic_search','SPLIT_OVERLAP'))
output_semantic_pre = semantic_processing_pipeline.run(file_paths = file_path,
params= {"FileConverter": {"file_path": file_path, \
"file_name": file_name},
"UdfPreProcessor": {"removePunc": False, \
"split_by": split_by, \
"split_length":split_length,\
"split_overlap": split_overlap}})
return output_semantic_pre['documents']
class QueryCheck(BaseComponent):
outgoing_edges = 1
def run(self, query):
query_classifier = TransformersQueryClassifier(model_name_or_path=
"shahrukhx01/bert-mini-finetune-question-detection")
result = query_classifier.run(query=query)
if result[1] == "output_1":
output = {"query":query,
"query_type": 'question/statement'}
else:
output = {"query": "find all issues related to {}".format(query),
"query_type": 'statements/keyword'}
return output, "output_1"
def run_batch(self, query):
pass
def semanticSearchPipeline(documents, show_answers = False):
document_store = InMemoryDocumentStore()
document_store.write_documents(documents)
embedding_model = config.get('semantic_search','RETRIEVER')
embedding_model_format = config.get('semantic_search','RETRIEVER_FORMAT')
embedding_layer = int(config.get('semantic_search','RETRIEVER_EMB_LAYER'))
retriever_top_k = int(config.get('semantic_search','RETRIEVER_TOP_K'))
querycheck = QueryCheck()
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model=embedding_model,top_k = retriever_top_k,
emb_extraction_layer=embedding_layer, scale_score =True,
model_format=embedding_model_format, use_gpu = True)
document_store.update_embeddings(retriever)
semanticsearch_pipeline = Pipeline()
semanticsearch_pipeline.add_node(component = querycheck, name = "QueryCheck",
inputs = ["Query"])
semanticsearch_pipeline.add_node(component = retriever, name = "EmbeddingRetriever",
inputs = ["QueryCheck.output_1"])
if show_answers == True:
reader_model = config.get('semantic_search','READER')
reader_top_k = retriever_top_k
reader = FARMReader(model_name_or_path=reader_model,
top_k = reader_top_k, use_gpu=True)
semanticsearch_pipeline.add_node(component = reader, name = "FARMReader",
inputs= ["EmbeddingRetriever"])
return semanticsearch_pipeline, document_store
def semantic_search(query:Text,documents:List[Document],show_answers = False):
"""
Performs the Lexical search on the List of haystack documents which is
returned by preprocessing Pipeline.
"""
threshold = 0.4
semanticsearch_pipeline, doc_store = semanticSearchPipeline(documents,
show_answers=show_answers)
results = semanticsearch_pipeline.run(query = query)
if show_answers == False:
results = results['documents']
for i,queryhit in enumerate(results):
if queryhit.score > threshold:
st.write("\t {}: \t {}".format(i+1, queryhit.content.replace("\n", " ")))
st.markdown("---")
else:
matches = []
doc = []
for answer in results['answers']:
if answer.score >0.01:
temp = answer.to_dict()
start_idx = temp['offsets_in_document'][0]['start']
end_idx = temp['offsets_in_document'][0]['end']
matches.append([start_idx,end_idx])
doc.append(doc_store.get_document_by_id(temp['document_id']).content)
searchAnnotator(matches,doc)
return results
|