File size: 4,931 Bytes
22b8e0b 72e4dad 570b6e4 22b8e0b 8c4c590 72e4dad 4df35da 570b6e4 72e4dad 22b8e0b 72e4dad 22b8e0b 570b6e4 72e4dad 22b8e0b d3cc512 fb4cce0 e836bc5 72e4dad fb4cce0 da1c31e fb4cce0 e836bc5 fb4cce0 8c4c590 72e4dad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
import docx
from docx.shared import Inches
from docx.shared import Pt
from docx.enum.style import WD_STYLE_TYPE
from utils.sdg_classifier import sdg_classification
from utils.sdg_classifier import runSDGPreprocessingPipeline
import logging
logger = logging.getLogger(__name__)
def app():
with st.container():
st.markdown("<h1 style='text-align: center; color: black;'> SDSN x GIZ Policy Action Tracking v0.1</h1>", unsafe_allow_html=True)
st.write(' ')
st.write(' ')
with st.expander("ℹ️ - About this app", expanded=False):
st.write(
"""
The *Analyse Policy Document* app is an easy-to-use interface built \
in Streamlit for analyzing policy documents with respect to SDG \
Classification for the paragraphs/texts in the document - \
developed by GIZ Data and the Sustainable Development Solution Network. \n
""")
st.markdown("")
with st.container():
if st.button("RUN SDG Analysis"):
if 'filepath' in st.session_state:
file_name = st.session_state['filename']
file_path = st.session_state['filename']
allDocuments = runSDGPreprocessingPipeline(file_path,file_name)
if len(allDocuments['documents']) > 100:
warning_msg = ": This might take sometime, please sit back and relax."
else:
warning_msg = ""
with st.spinner("Running SDG Classification{}".format(warning_msg)):
df, x = sdg_classification(allDocuments['documents'])
plt.rcParams['font.size'] = 25
colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x)))
# plot
fig, ax = plt.subplots()
ax.pie(x, colors=colors, radius=2, center=(4, 4),
wedgeprops={"linewidth": 1, "edgecolor": "white"},
frame=False,labels =list(x.index))
# fig.savefig('temp.png', bbox_inches='tight',dpi= 100)
st.markdown("#### Anything related to SDGs? ####")
c4, c5, c6 = st.columns([2, 2, 2])
with c5:
st.pyplot(fig)
c7, c8, c9 = st.columns([1, 10, 1])
with c8:
st.table(df)
else:
st.info("🤔 No document found, please try to upload it at the sidebar!")
logging.warning("Terminated as no document provided")
# 1. Keyword heatmap \n
# 2. SDG Classification for the paragraphs/texts in the document
#
# with st.container():
# if 'docs' in st.session_state:
# docs = st.session_state['docs']
# docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
# # paraList = st.session_state['paraList']
# logging.info("keybert")
# with st.spinner("Running Key bert"):
# kw_model = load_keyBert()
# keywords = kw_model.extract_keywords(
# all_text,
# keyphrase_ngram_range=(1, 3),
# use_mmr=True,
# stop_words="english",
# top_n=10,
# diversity=0.7,
# )
# st.markdown("## 🎈 What is my document about?")
# df = (
# DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
# .sort_values(by="Relevancy", ascending=False)
# .reset_index(drop=True)
# )
# df1 = (
# DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
# .sort_values(by="Relevancy", ascending=False)
# .reset_index(drop=True)
# )
# df.index += 1
# # Add styling
# cmGreen = sns.light_palette("green", as_cmap=True)
# cmRed = sns.light_palette("red", as_cmap=True)
# df = df.style.background_gradient(
# cmap=cmGreen,
# subset=[
# "Relevancy",
# ],
# )
# c1, c2, c3 = st.columns([1, 3, 1])
# format_dictionary = {
# "Relevancy": "{:.1%}",
# }
# df = df.format(format_dictionary)
# with c2:
#
# st.table(df) |