Spaces:
GIZ
/
Running on CPU Upgrade

File size: 4,216 Bytes
4a6159c
7de7bf4
4a6159c
 
 
b037e41
4a6159c
 
570b6e4
4a6159c
570b6e4
4a6159c
048a702
4a6159c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596accd
7de7bf4
4a6159c
 
 
 
 
 
 
7de7bf4
 
 
4a6159c
 
 
 
 
 
 
 
 
 
 
048a702
 
 
 
 
7de7bf4
1a4b146
048a702
1a4b146
 
 
3f0df44
570b6e4
4a6159c
 
 
 
 
 
 
 
 
048a702
4a6159c
 
 
048a702
 
 
 
 
 
 
 
 
4a6159c
2caced7
 
 
 
 
 
 
4a6159c
048a702
4a6159c
 
 
 
 
1d3978a
 
4a6159c
 
 
 
 
 
1d3978a
 
4a6159c
7de7bf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from haystack.nodes import TransformersDocumentClassifier
from haystack.schema import Document
from typing import List, Tuple
import configparser
import streamlit as st
# from utils.streamlitcheck import check_streamlit
from pandas import DataFrame, Series
import logging
from utils.preprocessing import processingpipeline
config = configparser.ConfigParser()
config.read_file(open('paramconfig.cfg'))


def load_sdgClassifier():
    """
    loads the document classifier using haystack, where the name/path of model
    in HF-hub as string is used to fetch the model object.
     1. https://docs.haystack.deepset.ai/reference/document-classifier-api
     2. https://docs.haystack.deepset.ai/docs/document_classifier

    Return: document classifier model
    """
    logging.info("Loading classifier")
    doc_classifier_model = config.get('sdg','MODEL')
    doc_classifier = TransformersDocumentClassifier(
        model_name_or_path=doc_classifier_model,
        task="text-classification")
    return doc_classifier


def sdg_classification(haystackdoc:List[Document])->Tuple[DataFrame,Series]:
    """
    Text-Classification on the list of texts provided. Classifier provides the 
    most appropriate label for each text. these labels are in terms of if text 
    belongs to which particular Sustainable Devleopment Goal (SDG).

    Params
    ---------
    haystackdoc: List of haystack Documents. The output of Preprocessing Pipeline 
    contains the list of paragraphs in different format,here the list of 
    Haystack Documents is used.

    Returns
    ----------
    df: Dataframe with two columns['SDG:int', 'text']
    x: Series object with the unique SDG covered in the document uploaded and 
    the number of times it is covered/discussed/count_of_paragraphs. 

    """
    logging.info("running SDG classifiication")
    threshold = float(config.get('sdg','THRESHOLD'))

    if check_streamlit():
        st.write("caching model")
        classifier = st.cache(load_sdgClassifier(), allow_output_mutation=True)
    else:
        classifier = load_sdgClassifier()
    results = classifier.predict(haystackdoc)


    labels_= [(l.meta['classification']['label'],
               l.meta['classification']['score'],l.content,) for l in results]

    df = DataFrame(labels_, columns=["SDG","Relevancy","text"])
    
    df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)  
    df.index += 1
    df =df[df['Relevancy']>threshold]
    x = df['SDG'].value_counts()
    df= df.drop(['Relevancy'], axis = 1)
    

    return df, x

def runSDGPreprocessingPipeline(file_path = None, file_name = None)->List[Document]:
    """
    creates the pipeline and runs the preprocessing pipeline, 
    the params for pipeline are fetched from paramconfig

    Param
    ------------

    file_path: filepath, if not given will check for file_path in streamlit 
    session_state, else will return 

    file_name: filename, if not given will check for file_name in streamlit 
    session_state
    
    Return
    --------------
    List[Document]: When preprocessing pipeline is run, the output dictionary 
    has four objects. For the Haysatck implementation of SDG classification we, 
    need to use the List of Haystack Document, which can be fetched by 
    key = 'documents' on output.

    """
    # if file_path:
    file_path = st.session_state['filepath']
    file_name = st.session_state['filename']
    sdg_processing_pipeline = processingpipeline()
    split_by = config.get('sdg','SPLIT_BY')
    split_length = int(config.get('sdg','SPLIT_LENGTH'))
    split_overlap = int(config.get('sdg','SPLIT_OVERLAP'))


    output_sdg_pre = sdg_processing_pipeline.run(file_paths = file_path, 
                            params= {"FileConverter": {"file_path": file_path, \
                                        "file_name": file_name}, 
                                     "UdfPreProcessor": {"removePunc": False, \
                                            "split_by": split_by, \
                                            "split_length":split_length,\
                                            "split_overlap": split_overlap}})
    
    return output_sdg_pre['documents']