Spaces:
GIZ
/
Running on CPU Upgrade

SDSN-demo / utils /sdg_classifier.py
prashant
trying streamlit-aggrid
40debb1
raw
history blame
No virus
5.57 kB
from haystack.nodes import TransformersDocumentClassifier
from haystack.schema import Document
from typing import List, Tuple
import configparser
import logging
import pandas as pd
from pandas import DataFrame, Series
from utils.preprocessing import processingpipeline
try:
import streamlit as st
except ImportError:
logging.info("Streamlit not installed")
config = configparser.ConfigParser()
try:
config.read_file(open('paramconfig.cfg'))
except Exception:
logging.info("paramconfig file not found")
st.info("Please place the paramconfig file in the same directory as app.py")
_lab_dict = {0: 'no_cat',
1:'SDG 1 - No poverty',
2:'SDG 2 - Zero hunger',
3:'SDG 3 - Good health and well-being',
4:'SDG 4 - Quality education',
5:'SDG 5 - Gender equality',
6:'SDG 6 - Clean water and sanitation',
7:'SDG 7 - Affordable and clean energy',
8:'SDG 8 - Decent work and economic growth',
9:'SDG 9 - Industry, Innovation and Infrastructure',
10:'SDG 10 - Reduced inequality',
11:'SDG 11 - Sustainable cities and communities',
12:'SDG 12 - Responsible consumption and production',
13:'SDG 13 - Climate action',
14:'SDG 14 - Life below water',
15:'SDG 15 - Life on land',
16:'SDG 16 - Peace, justice and strong institutions',
17:'SDG 17 - Partnership for the goals',}
@st.cache(allow_output_mutation=True)
def load_sdgClassifier():
"""
loads the document classifier using haystack, where the name/path of model
in HF-hub as string is used to fetch the model object.
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
2. https://docs.haystack.deepset.ai/docs/document_classifier
Return: document classifier model
"""
logging.info("Loading classifier")
doc_classifier_model = config.get('sdg','MODEL')
doc_classifier = TransformersDocumentClassifier(
model_name_or_path=doc_classifier_model,
task="text-classification")
return doc_classifier
@st.cache(allow_output_mutation=True)
def sdg_classification(haystackdoc:List[Document])->Tuple[DataFrame,Series]:
"""
Text-Classification on the list of texts provided. Classifier provides the
most appropriate label for each text. these labels are in terms of if text
belongs to which particular Sustainable Devleopment Goal (SDG).
Params
---------
haystackdoc: List of haystack Documents. The output of Preprocessing Pipeline
contains the list of paragraphs in different format,here the list of
Haystack Documents is used.
Returns
----------
df: Dataframe with two columns['SDG:int', 'text']
x: Series object with the unique SDG covered in the document uploaded and
the number of times it is covered/discussed/count_of_paragraphs.
"""
logging.info("Working on SDG Classification")
threshold = float(config.get('sdg','THRESHOLD'))
classifier = load_sdgClassifier()
results = classifier.predict(haystackdoc)
labels_= [(l.meta['classification']['label'],
l.meta['classification']['score'],l.content,) for l in results]
df = DataFrame(labels_, columns=["SDG","Relevancy","text"])
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
df.index += 1
df =df[df['Relevancy']>threshold]
x = df['SDG'].value_counts()
x = x.rename('count')
x = x.rename_axis('SDG').reset_index()
x["SDG"] = pd.to_numeric(x["SDG"])
x['SDG_name'] = x['SDG'].apply(lambda x: _lab_dict[x])
df= df.drop(['Relevancy'], axis = 1)
return df, x
def runSDGPreprocessingPipeline(filePath, fileName)->List[Document]:
"""
creates the pipeline and runs the preprocessing pipeline,
the params for pipeline are fetched from paramconfig
Params
------------
file_name: filename, in case of streamlit application use
st.session_state['filename']
file_path: filepath, in case of streamlit application use
st.session_state['filepath']
Return
--------------
List[Document]: When preprocessing pipeline is run, the output dictionary
has four objects. For the Haysatck implementation of SDG classification we,
need to use the List of Haystack Document, which can be fetched by
key = 'documents' on output.
"""
sdg_processing_pipeline = processingpipeline()
split_by = config.get('sdg','SPLIT_BY')
split_length = int(config.get('sdg','SPLIT_LENGTH'))
split_overlap = int(config.get('sdg','SPLIT_OVERLAP'))
remove_punc = bool(int(config.get('sdg','REMOVE_PUNC')))
split_respect_sentence_boundary = bool(int(config.get('sdg','RESPECT_SENTENCE_BOUNDARY')))
output_sdg_pre = sdg_processing_pipeline.run(file_paths = filePath,
params= {"FileConverter": {"file_path": filePath, \
"file_name": fileName},
"UdfPreProcessor": {"removePunc": remove_punc, \
"split_by": split_by, \
"split_length":split_length,\
"split_overlap": split_overlap, \
"split_respect_sentence_boundary":split_respect_sentence_boundary}})
return output_sdg_pre