|
import pandas as pd |
|
|
|
|
|
|
|
|
|
import pickle |
|
from typing import List, Text |
|
import logging |
|
from summa import keywords |
|
|
|
try: |
|
import streamlit as st |
|
except ImportError: |
|
logging.info("Streamlit not installed") |
|
|
|
|
|
def sort_coo(coo_matrix): |
|
""" |
|
It takes Coordinate format scipy sparse matrix and extracts info from same.\ |
|
1. https://kavita-ganesan.com/python-keyword-extraction/#.Y2-TFHbMJPb |
|
""" |
|
tuples = zip(coo_matrix.col, coo_matrix.data) |
|
return sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True) |
|
|
|
def extract_topn_from_vector(feature_names, sorted_items, top_n=10): |
|
"""get the feature names and tf-idf score of top n items |
|
|
|
Params |
|
--------- |
|
feature_names: list of words from vectorizer |
|
sorted_items: tuple returned by sort_coo function defined in \ |
|
keyword_extraction.py |
|
topn: topn words to be extracted using tfidf |
|
|
|
Return |
|
---------- |
|
results: top extracted keywords |
|
|
|
""" |
|
|
|
|
|
sorted_items = sorted_items[:top_n] |
|
score_vals = [] |
|
feature_vals = [] |
|
|
|
|
|
for idx, score in sorted_items: |
|
|
|
|
|
score_vals.append(round(score, 3)) |
|
feature_vals.append(feature_names[idx]) |
|
|
|
results= {} |
|
for idx in range(len(feature_vals)): |
|
results[feature_vals[idx]]=score_vals[idx] |
|
|
|
return results |
|
|
|
|
|
def tfidf_keyword(textdata:str, vectorizer, tfidfmodel, top_n): |
|
""" |
|
TFIDF based keywords extraction |
|
|
|
Params |
|
--------- |
|
vectorizer: trained cont vectorizer model |
|
tfidfmodel: TFIDF Tranformer model |
|
top_n: Top N keywords to be extracted |
|
textdata: text data to which needs keyword extraction |
|
|
|
Return |
|
---------- |
|
keywords: top extracted keywords |
|
|
|
""" |
|
features = vectorizer.get_feature_names_out() |
|
tf_idf_vector=tfidfmodel.transform(vectorizer.transform(textdata)) |
|
sorted_items=sort_coo(tf_idf_vector.tocoo()) |
|
results=extract_topn_from_vector(features,sorted_items,top_n) |
|
keywords = [keyword for keyword in results] |
|
return keywords |
|
|
|
def keyword_extraction(sdg:int,sdgdata:List[Text], top_n:int=10): |
|
""" |
|
TFIDF based keywords extraction |
|
|
|
Params |
|
--------- |
|
sdg: which sdg tfidf model to be used |
|
sdgdata: text data to which needs keyword extraction |
|
|
|
|
|
Return |
|
---------- |
|
keywords: top extracted keywords |
|
|
|
""" |
|
model_path = "docStore/sdg{}/".format(sdg) |
|
vectorizer = pickle.load(open(model_path+'vectorizer.pkl', 'rb')) |
|
tfidfmodel = pickle.load(open(model_path+'tfidfmodel.pkl', 'rb')) |
|
features = vectorizer.get_feature_names_out() |
|
tf_idf_vector=tfidfmodel.transform(vectorizer.transform(sdgdata)) |
|
sorted_items=sort_coo(tf_idf_vector.tocoo()) |
|
top_n = top_n |
|
results=extract_topn_from_vector(features,sorted_items,top_n) |
|
keywords = [keyword for keyword in results] |
|
return keywords |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def textrank(textdata:Text, ratio:float = 0.1, words:int = 0)->List[str]: |
|
""" |
|
wrappper function to perform textrank, uses either ratio or wordcount to |
|
extract top keywords limited by words or ratio. |
|
1. https://github.com/summanlp/textrank/blob/master/summa/keywords.py |
|
|
|
Params |
|
-------- |
|
textdata: text data to perform the textrank. |
|
ratio: float to limit the number of keywords as proportion of total token \ |
|
in textdata |
|
words: number of keywords to be extracted. Takes priority over ratio if \ |
|
Non zero. Howevr incase the pagerank returns lesser keywords than \ |
|
compared to fix value then ratio is used. |
|
|
|
Return |
|
-------- |
|
results: extracted keywords |
|
""" |
|
if words == 0: |
|
logging.info("Textrank using defulat ratio value = 0.1, as no words limit given") |
|
results = keywords.keywords(textdata, ratio= ratio).split("\n") |
|
else: |
|
try: |
|
results = keywords.keywords(textdata, words= words).split("\n") |
|
except: |
|
results = keywords.keywords(textdata, ratio = ratio).split("\n") |
|
|
|
return results |
|
|
|
|
|
|