Spaces:
GIZ
/
Running on CPU Upgrade

prashant commited on
Commit
c8b3108
1 Parent(s): 07dfa2c

upload update

Browse files
appStore/sdg_analysis.py CHANGED
@@ -8,10 +8,6 @@ import matplotlib.pyplot as plt
8
  import numpy as np
9
  import pandas as pd
10
  import streamlit as st
11
- import docx
12
- from docx.shared import Inches
13
- from docx.shared import Pt
14
- from docx.enum.style import WD_STYLE_TYPE
15
  from st_aggrid import AgGrid
16
  from st_aggrid.shared import ColumnsAutoSizeMode
17
  from utils.sdg_classifier import sdg_classification
@@ -75,6 +71,7 @@ def app():
75
  """)
76
  st.markdown("")
77
 
 
78
  _lab_dict = {0: 'no_cat',
79
  1:'SDG 1 - No poverty',
80
  2:'SDG 2 - Zero hunger',
@@ -94,6 +91,7 @@ def app():
94
  16:'SDG 16 - Peace, justice and strong institutions',
95
  17:'SDG 17 - Partnership for the goals',}
96
 
 
97
  with st.container():
98
  if st.button("RUN SDG Analysis"):
99
 
@@ -114,12 +112,9 @@ def app():
114
  textrankkeywordlist = []
115
  for label in sdg_labels:
116
  sdgdata = " ".join(df[df.SDG == label].text.to_list())
117
- # tfidflist_ = keywordExtraction(label,[sdgdata])
118
  textranklist_ = textrank(sdgdata)
119
  if len(textranklist_) > 0:
120
- # tfidfkeywordList.append({'SDG':label, 'TFIDF Keywords':tfidflist_})
121
  textrankkeywordlist.append({'SDG':label, 'TextRank Keywords':",".join(textranklist_)})
122
- # tfidfkeywordsDf = pd.DataFrame(tfidfkeywordList)
123
  tRkeywordsDf = pd.DataFrame(textrankkeywordlist)
124
 
125
 
@@ -145,19 +140,15 @@ def app():
145
  labeldf = x['SDG_name'].values.tolist()
146
  labeldf = "<br>".join(labeldf)
147
  st.markdown(labeldf, unsafe_allow_html=True)
148
-
149
  st.markdown("###### What keywords are present under SDG classified text? ######")
150
 
151
- # c1, c2, c3 = st.columns([1, 10, 1])
152
- # with c2:
153
- # st.table(tRkeywordsDf)
154
  AgGrid(tRkeywordsDf, reload_data = False,
155
  update_mode="value_changed",
156
  columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS)
157
-
158
  st.markdown("###### Top few SDG Classified paragraph/text results ######")
159
- # c7, c8, c9 = st.columns([1, 10, 1])
160
- # with c8:
161
  AgGrid(df, reload_data = False, update_mode="value_changed",
162
  columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS)
163
  else:
@@ -165,63 +156,3 @@ def app():
165
  logging.warning("Terminated as no document provided")
166
 
167
 
168
-
169
-
170
- # 1. Keyword heatmap \n
171
- # 2. SDG Classification for the paragraphs/texts in the document
172
- #
173
-
174
- # with st.container():
175
- # if 'docs' in st.session_state:
176
- # docs = st.session_state['docs']
177
- # docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs)
178
- # # paraList = st.session_state['paraList']
179
- # logging.info("keybert")
180
- # with st.spinner("Running Key bert"):
181
-
182
- # kw_model = load_keyBert()
183
-
184
- # keywords = kw_model.extract_keywords(
185
- # all_text,
186
- # keyphrase_ngram_range=(1, 3),
187
- # use_mmr=True,
188
- # stop_words="english",
189
- # top_n=10,
190
- # diversity=0.7,
191
- # )
192
-
193
- # st.markdown("## 🎈 What is my document about?")
194
-
195
- # df = (
196
- # DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
197
- # .sort_values(by="Relevancy", ascending=False)
198
- # .reset_index(drop=True)
199
- # )
200
- # df1 = (
201
- # DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"])
202
- # .sort_values(by="Relevancy", ascending=False)
203
- # .reset_index(drop=True)
204
- # )
205
- # df.index += 1
206
-
207
- # # Add styling
208
- # cmGreen = sns.light_palette("green", as_cmap=True)
209
- # cmRed = sns.light_palette("red", as_cmap=True)
210
- # df = df.style.background_gradient(
211
- # cmap=cmGreen,
212
- # subset=[
213
- # "Relevancy",
214
- # ],
215
- # )
216
-
217
- # c1, c2, c3 = st.columns([1, 3, 1])
218
-
219
- # format_dictionary = {
220
- # "Relevancy": "{:.1%}",
221
- # }
222
-
223
- # df = df.format(format_dictionary)
224
-
225
- # with c2:
226
- #
227
- # st.table(df)
 
8
  import numpy as np
9
  import pandas as pd
10
  import streamlit as st
 
 
 
 
11
  from st_aggrid import AgGrid
12
  from st_aggrid.shared import ColumnsAutoSizeMode
13
  from utils.sdg_classifier import sdg_classification
 
71
  """)
72
  st.markdown("")
73
 
74
+ ### Label Dictionary ###
75
  _lab_dict = {0: 'no_cat',
76
  1:'SDG 1 - No poverty',
77
  2:'SDG 2 - Zero hunger',
 
91
  16:'SDG 16 - Peace, justice and strong institutions',
92
  17:'SDG 17 - Partnership for the goals',}
93
 
94
+ ### Main app code ###
95
  with st.container():
96
  if st.button("RUN SDG Analysis"):
97
 
 
112
  textrankkeywordlist = []
113
  for label in sdg_labels:
114
  sdgdata = " ".join(df[df.SDG == label].text.to_list())
 
115
  textranklist_ = textrank(sdgdata)
116
  if len(textranklist_) > 0:
 
117
  textrankkeywordlist.append({'SDG':label, 'TextRank Keywords':",".join(textranklist_)})
 
118
  tRkeywordsDf = pd.DataFrame(textrankkeywordlist)
119
 
120
 
 
140
  labeldf = x['SDG_name'].values.tolist()
141
  labeldf = "<br>".join(labeldf)
142
  st.markdown(labeldf, unsafe_allow_html=True)
143
+ st.write("")
144
  st.markdown("###### What keywords are present under SDG classified text? ######")
145
 
 
 
 
146
  AgGrid(tRkeywordsDf, reload_data = False,
147
  update_mode="value_changed",
148
  columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS)
149
+ st.write("")
150
  st.markdown("###### Top few SDG Classified paragraph/text results ######")
151
+
 
152
  AgGrid(df, reload_data = False, update_mode="value_changed",
153
  columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS)
154
  else:
 
156
  logging.warning("Terminated as no document provided")
157
 
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
docStore/sample/files.json ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"South Africa:Low Emission strategy":"docStore/sample/South Africa_s Low Emission Development Strategy.txt",
2
+ "Ethiopia: 10 Year Development Plan":"docStore/sample/Ethiopia_s_2021_10 Year Development Plan.txt"}
utils/uploadAndExample.py CHANGED
@@ -1,5 +1,6 @@
1
  import streamlit as st
2
  import tempfile
 
3
 
4
  def add_upload(choice):
5
  """
@@ -22,14 +23,19 @@ def add_upload(choice):
22
 
23
  else:
24
  # listing the options
 
 
 
25
  option = st.sidebar.selectbox('Select the example document',
26
- ('South Africa:Low Emission strategy',
27
- 'Ethiopia: 10 Year Development Plan'))
28
- if option is 'South Africa:Low Emission strategy':
29
- file_name = file_path = 'docStore/sample/South Africa_s Low Emission Development Strategy.txt'
30
- st.session_state['filename'] = file_name
31
- st.session_state['filepath'] = file_path
32
- else:
33
- file_name = file_path = 'docStore/sample/Ethiopia_s_2021_10 Year Development Plan.txt'
34
- st.session_state['filename'] = file_name
35
- st.session_state['filepath'] = file_path
 
 
 
1
  import streamlit as st
2
  import tempfile
3
+ import json
4
 
5
  def add_upload(choice):
6
  """
 
23
 
24
  else:
25
  # listing the options
26
+ with open('docStore/sample/files.json','r') as json_file:
27
+ files = json.load(json_file)
28
+
29
  option = st.sidebar.selectbox('Select the example document',
30
+ list(files.keys()))
31
+ file_name = file_path = files[option]
32
+ st.session_state['filename'] = file_name
33
+ st.session_state['filepath'] = file_path
34
+ # if option is 'South Africa:Low Emission strategy':
35
+ # file_name = file_path = 'docStore/sample/South Africa_s Low Emission Development Strategy.txt'
36
+ # st.session_state['filename'] = file_name
37
+ # st.session_state['filepath'] = file_path
38
+ # else:
39
+ # file_name = file_path = 'docStore/sample/Ethiopia_s_2021_10 Year Development Plan.txt'
40
+ # st.session_state['filename'] = file_name
41
+ # st.session_state['filepath'] = file_path