# set path import glob, os, sys; sys.path.append('../udfPreprocess') #import helper import udfPreprocess.docPreprocessing as pre import udfPreprocess.cleaning as clean #import needed libraries import seaborn as sns from pandas import DataFrame from keybert import KeyBERT from transformers import pipeline import matplotlib.pyplot as plt import numpy as np import streamlit as st import pandas as pd import tempfile import sqlite3 def app(): with st.container(): st.markdown("

SDSN x GIZ Policy Action Tracking v0.1

", unsafe_allow_html=True) st.write(' ') st.write(' ') with st.expander("ℹī¸ - About this app", expanded=True): st.write( """ The *Analyse Policy Document* app is an easy-to-use interface built in Streamlit for analyzing policy documents - developed by GIZ Data and the Sustainable Development Solution Network. \n 1. Keyword heatmap \n 2. SDG Classification for the paragraphs/texts in the document """ ) st.markdown("") st.markdown("") st.markdown("## 📌 Step One: Upload document ") with st.container(): docs = None # asking user for either upload or select existing doc choice = st.radio(label = 'Select the Document', help = 'You can upload the document \ or else you can try a example document', options = ('Upload Document', 'Try Example'), horizontal = True) if choice == 'Upload Document': uploaded_file = st.file_uploader('Upload the File', type=['pdf', 'docx', 'txt']) if uploaded_file is not None: with tempfile.NamedTemporaryFile(mode="wb") as temp: bytes_data = uploaded_file.getvalue() temp.write(bytes_data) st.write("Uploaded Filename: ", uploaded_file.name) file_name = uploaded_file.name file_path = temp.name docs = pre.load_document(file_path, file_name) docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs) #haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs) else: # listing the options option = st.selectbox('Select the example document', ('Ethiopia: 10 Year Development Plan', 'South Africa:Low Emission strategy')) if option is 'South Africa:Low Emission strategy': file_name = file_path = 'sample/South Africa_s Low Emission Development Strategy.txt' st.write("Selected document:", file_name.split('/')[1]) # with open('sample/South Africa_s Low Emission Development Strategy.txt') as dfile: # file = open('sample/South Africa_s Low Emission Development Strategy.txt', 'wb') else: # with open('sample/Ethiopia_s_2021_10 Year Development Plan.txt') as dfile: file_name = file_path = 'sample/Ethiopia_s_2021_10 Year Development Plan.txt' st.write("Selected document:", file_name.split('/')[1]) if option is not None: docs = pre.load_document(file_path,file_name) # haystackDoc, dataframeDoc, textData, paraList = clean.preprocessing(docs) docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs) if docs is not None: @st.cache(allow_output_mutation=True) def load_keyBert(): return KeyBERT() kw_model = load_keyBert() keywords = kw_model.extract_keywords( all_text, keyphrase_ngram_range=(1, 3), use_mmr=True, stop_words="english", top_n=10, diversity=0.7, ) st.markdown("## 🎈 What is my document about?") df = ( DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"]) .sort_values(by="Relevancy", ascending=False) .reset_index(drop=True) ) df.index += 1 # Add styling cmGreen = sns.light_palette("green", as_cmap=True) cmRed = sns.light_palette("red", as_cmap=True) df = df.style.background_gradient( cmap=cmGreen, subset=[ "Relevancy", ], ) c1, c2, c3 = st.columns([1, 3, 1]) format_dictionary = { "Relevancy": "{:.1%}", } df = df.format(format_dictionary) with c2: st.table(df) ######## SDG classiciation # @st.cache(allow_output_mutation=True) # def load_sdgClassifier(): # classifier = pipeline("text-classification", model= "../models/osdg_sdg/") # return classifier # load from disc (github repo) for performance boost @st.cache(allow_output_mutation=True) def load_sdgClassifier(): classifier = pipeline("text-classification", model= "jonas/roberta-base-finetuned-sdg") return classifier classifier = load_sdgClassifier() # # not needed, par list comes from pre_processing function already # word_list = all_text.split() # len_word_list = len(word_list) # par_list = [] # par_len = 130 # for i in range(0,len_word_list // par_len): # string_part = ' '.join(word_list[i*par_len:(i+1)*par_len]) # par_list.append(string_part) labels = classifier(par_list) labels_= [(l['label'],l['score']) for l in labels] df = DataFrame(labels_, columns=["SDG", "Relevancy"]) df['text'] = par_list df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True) df.index += 1 df =df[df['Relevancy']>.85] x = df['SDG'].value_counts() plt.rcParams['font.size'] = 25 colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x))) # plot fig, ax = plt.subplots() ax.pie(x, colors=colors, radius=2, center=(4, 4), wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.index)) st.markdown("## 🎈 Anything related to SDGs?") c4, c5, c6 = st.columns([5, 7, 1]) # Add styling cmGreen = sns.light_palette("green", as_cmap=True) cmRed = sns.light_palette("red", as_cmap=True) df = df.style.background_gradient( cmap=cmGreen, subset=[ "Relevancy", ], ) format_dictionary = { "Relevancy": "{:.1%}", } df = df.format(format_dictionary) with c4: st.pyplot(fig) with c6: st.table(df)