import pandas as pd # from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer # import nltk # nltk.download('stopwords') # from nltk.corpus import stopwords import pickle from typing import List, Text import configparser import logging from summa import keywords try: from termcolor import colored except: pass try: import streamlit as st except ImportError: logging.info("Streamlit not installed") config = configparser.ConfigParser() try: config.read_file(open('paramconfig.cfg')) except Exception: logging.warning("paramconfig file not found") st.info("Please place the paramconfig file in the same directory as app.py") def sort_coo(coo_matrix): tuples = zip(coo_matrix.col, coo_matrix.data) return sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True) def extract_topn_from_vector(feature_names, sorted_items, topn=10): """get the feature names and tf-idf score of top n items""" #use only topn items from vector sorted_items = sorted_items[:topn] score_vals = [] feature_vals = [] # word index and corresponding tf-idf score for idx, score in sorted_items: #keep track of feature name and its corresponding score score_vals.append(round(score, 3)) feature_vals.append(feature_names[idx]) #create a tuples of feature,score #results = zip(feature_vals,score_vals) results= {} for idx in range(len(feature_vals)): results[feature_vals[idx]]=score_vals[idx] return results def keywordExtraction(sdg:int,sdgdata:List[Text]): model_path = "docStore/sdg{}/".format(sdg) vectorizer = pickle.load(open(model_path+'vectorizer.pkl', 'rb')) tfidfmodel = pickle.load(open(model_path+'tfidfmodel.pkl', 'rb')) features = vectorizer.get_feature_names_out() tf_idf_vector=tfidfmodel.transform(vectorizer.transform(sdgdata)) sorted_items=sort_coo(tf_idf_vector.tocoo()) top_n = int(config.get('tfidf', 'TOP_N')) results=extract_topn_from_vector(features,sorted_items,top_n) keywords = [keyword for keyword in results] return keywords def textrank(textdata, ratio = 0.1, words = 0): if words == 0: results = keywords.keywords(textdata, ratio= ratio).split("\n") else: results = keywords.keywords(textdata, words= words).split("\n") return results