# set path import glob, os, sys; sys.path.append('../utils') #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st import docx from docx.shared import Inches from docx.shared import Pt from docx.enum.style import WD_STYLE_TYPE from st_aggrid import AgGrid from st_aggrid.shared import ColumnsAutoSizeMode from utils.sdg_classifier import sdg_classification from utils.sdg_classifier import runSDGPreprocessingPipeline from utils.keyword_extraction import keywordExtraction, textrank import logging logger = logging.getLogger(__name__) def app(): #### APP INFO ##### with st.container(): st.markdown("

SDG Classification and Keyphrase Extraction

", unsafe_allow_html=True) st.write(' ') st.write(' ') with st.expander("ℹ️ - About this app", expanded=False): st.write( """ The *SDG Analysis* app is an easy-to-use interface built \ in Streamlit for analyzing policy documents with respect to SDG \ Classification for the paragraphs/texts in the document and \ extracting the keyphrase per SDG label - developed by GIZ Data \ and the Sustainable Development Solution Network. \n """) st.write("""**Document Processing:** The Uploaded/Selected document is \ automatically cleaned and split into paragraphs with a maximum \ length of 120 words using a Haystack preprocessing pipeline. The \ length of 120 is an empirical value which should reflect the length \ of a “context” and should limit the paragraph length deviation. \ However, since we want to respect the sentence boundary the limit \ can breach and hence this limit of 120 is tentative. \n """) st.write("""**SDG cLassification:** The application assigns paragraphs \ to 15 of the 17 United Nations Sustainable Development Goals (SDGs).\ SDG 16 “Peace, Justice and Strong Institutions” and SDG 17 \ “Partnerships for the Goals” are excluded from the analysis due to \ their broad nature which could potentially inflate the results. \ Each paragraph is assigned to one SDG only. Again, the results are \ displayed in a summary table including the number of the SDG, a \ relevancy score highlighted through a green color shading, and the \ respective text of the analyzed paragraph. Additionally, a pie \ chart with a blue color shading is displayed which illustrates the \ three most prominent SDGs in the document. The SDG classification \ uses open-source training [data](https://zenodo.org/record/5550238#.Y25ICHbMJPY) \ from [OSDG.ai](https://osdg.ai/) which is a global \ partnerships and growing community of researchers and institutions \ interested in the classification of research according to the \ Sustainable Development Goals. The summary table only displays \ paragraphs with a calculated relevancy score above 85%. \n""") st.write("""**Keyphrase Extraction:** The application extracts 15 \ keyphrases from the document, calculates a respective relevancy \ score, and displays the results in a summary table. The keyphrases \ are extracted using using [Textrank](https://github.com/summanlp/textrank)\ which is an easy-to-use computational less expensive \ model leveraging combination of TFIDF and Graph networks. """) st.markdown("") _lab_dict = {0: 'no_cat', 1:'SDG 1 - No poverty', 2:'SDG 2 - Zero hunger', 3:'SDG 3 - Good health and well-being', 4:'SDG 4 - Quality education', 5:'SDG 5 - Gender equality', 6:'SDG 6 - Clean water and sanitation', 7:'SDG 7 - Affordable and clean energy', 8:'SDG 8 - Decent work and economic growth', 9:'SDG 9 - Industry, Innovation and Infrastructure', 10:'SDG 10 - Reduced inequality', 11:'SDG 11 - Sustainable cities and communities', 12:'SDG 12 - Responsible consumption and production', 13:'SDG 13 - Climate action', 14:'SDG 14 - Life below water', 15:'SDG 15 - Life on land', 16:'SDG 16 - Peace, justice and strong institutions', 17:'SDG 17 - Partnership for the goals',} with st.container(): if st.button("RUN SDG Analysis"): if 'filepath' in st.session_state: file_name = st.session_state['filename'] file_path = st.session_state['filepath'] allDocuments = runSDGPreprocessingPipeline(file_path,file_name) if len(allDocuments['documents']) > 100: warning_msg = ": This might take sometime, please sit back and relax." else: warning_msg = "" with st.spinner("Running SDG Classification{}".format(warning_msg)): df, x = sdg_classification(allDocuments['documents']) sdg_labels = df.SDG.unique() textrankkeywordlist = [] for label in sdg_labels: sdgdata = " ".join(df[df.SDG == label].text.to_list()) # tfidflist_ = keywordExtraction(label,[sdgdata]) textranklist_ = textrank(sdgdata) if len(textranklist_) > 0: # tfidfkeywordList.append({'SDG':label, 'TFIDF Keywords':tfidflist_}) textrankkeywordlist.append({'SDG':label, 'TextRank Keywords':",".join(textranklist_)}) # tfidfkeywordsDf = pd.DataFrame(tfidfkeywordList) tRkeywordsDf = pd.DataFrame(textrankkeywordlist) plt.rcParams['font.size'] = 25 colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x))) # plot fig, ax = plt.subplots() ax.pie(x['count'], colors=colors, radius=2, center=(4, 4), wedgeprops={"linewidth": 1, "edgecolor": "white"}, frame=False,labels =list(x.SDG_name)) # fig.savefig('temp.png', bbox_inches='tight',dpi= 100) st.markdown("#### Anything related to SDGs? ####") c4, c5, c6 = st.columns([1, 3, 1]) with c5: st.pyplot(fig) st.markdown("###### What keywords are present under SDG classified text? ######") # c1, c2, c3 = st.columns([1, 10, 1]) # with c2: # st.table(tRkeywordsDf) AgGrid(tRkeywordsDf, reload_data = False, update_mode="value_changed", columns_auto_size_mode = ColumnsAutoSizeMode.FIT_ALL_COLUMNS_TO_VIEW ) st.markdown("###### Top few SDG Classified paragraph/text results ######") # c7, c8, c9 = st.columns([1, 10, 1]) # with c8: AgGrid(df, reload_data = False, update_mode="value_changed", columns_auto_size_mode = ColumnsAutoSizeMode.FIT_ALL_COLUMNS_TO_VIEW) else: st.info("🤔 No document found, please try to upload it at the sidebar!") logging.warning("Terminated as no document provided") # 1. Keyword heatmap \n # 2. SDG Classification for the paragraphs/texts in the document # # with st.container(): # if 'docs' in st.session_state: # docs = st.session_state['docs'] # docs_processed, df, all_text, par_list = clean.preprocessingForSDG(docs) # # paraList = st.session_state['paraList'] # logging.info("keybert") # with st.spinner("Running Key bert"): # kw_model = load_keyBert() # keywords = kw_model.extract_keywords( # all_text, # keyphrase_ngram_range=(1, 3), # use_mmr=True, # stop_words="english", # top_n=10, # diversity=0.7, # ) # st.markdown("## 🎈 What is my document about?") # df = ( # DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"]) # .sort_values(by="Relevancy", ascending=False) # .reset_index(drop=True) # ) # df1 = ( # DataFrame(keywords, columns=["Keyword/Keyphrase", "Relevancy"]) # .sort_values(by="Relevancy", ascending=False) # .reset_index(drop=True) # ) # df.index += 1 # # Add styling # cmGreen = sns.light_palette("green", as_cmap=True) # cmRed = sns.light_palette("red", as_cmap=True) # df = df.style.background_gradient( # cmap=cmGreen, # subset=[ # "Relevancy", # ], # ) # c1, c2, c3 = st.columns([1, 3, 1]) # format_dictionary = { # "Relevancy": "{:.1%}", # } # df = df.format(format_dictionary) # with c2: # # st.table(df)