# set path import glob, os, sys; sys.path.append('../utils') import streamlit as st import ast import logging from utils.ndc_explorer import countrySpecificCCA, countrySpecificCCM from utils.checkconfig import getconfig from utils.semantic_search import runSemanticPreprocessingPipeline,process_semantic_output from utils.semantic_search import semanticSearchPipeline, runSemanticPipeline from st_aggrid import AgGrid from st_aggrid.shared import ColumnsAutoSizeMode # Reading data and Declaring necessary variables with open('docStore/ndcs/countryList.txt') as dfile: countryList = dfile.read() countryList = ast.literal_eval(countryList) countrynames = list(countryList.keys()) with open('docStore/ndcs/cca.txt', encoding='utf-8', errors='ignore') as dfile: cca_sent = dfile.read() cca_sent = ast.literal_eval(cca_sent) with open('docStore/ndcs/ccm.txt', encoding='utf-8', errors='ignore') as dfile: ccm_sent = dfile.read() ccm_sent = ast.literal_eval(ccm_sent) config = getconfig('paramconfig.cfg') split_by = config.get('coherence','SPLIT_BY') split_length = int(config.get('coherence','SPLIT_LENGTH')) split_overlap = int(config.get('coherence','SPLIT_OVERLAP')) split_respect_sentence_boundary = bool(int(config.get('coherence', 'RESPECT_SENTENCE_BOUNDARY'))) remove_punc = bool(int(config.get('coherence','REMOVE_PUNC'))) embedding_model = config.get('coherence','RETRIEVER') embedding_model_format = config.get('coherence','RETRIEVER_FORMAT') embedding_layer = int(config.get('coherence','RETRIEVER_EMB_LAYER')) embedding_dim = int(config.get('coherence','EMBEDDING_DIM')) max_seq_len = int(config.get('coherence','MAX_SEQ_LENGTH')) retriever_top_k = int(config.get('coherence','RETRIEVER_TOP_K')) def app(): #### APP INFO ##### with st.container(): st.markdown("

NDC Comparison

", unsafe_allow_html=True) st.write(' ') st.write(' ') with st.expander("ℹ️ - About this app", expanded=False): st.write( """ The *NDC Comparison* application provides easy evaluation of coherence between a given policy document and a country’s (Intended)\ Nationally Determined Contribution (INDCs/NDCs) using open-source \ data from the German Institute of Development and Sustainability’s \ (IDOS) [NDC Explorer](https://klimalog.idos-research.de/ndc/#NDCExplorer/worldMap?NewAndUpdatedNDC??income???catIncome).\ """) st.write("") st.write(""" User can select a country context via the drop-down menu \ on the left-hand side of the application. Subsequently, the user is \ given the opportunity to manually upload another policy document \ from the same national context or to select a pre-loaded example \ document. Thereafter, the user can choose between two categories \ to compare coherence between the documents: climate change adaptation \ and climate change mitigation. Based on the selected information, \ the application identifies relevant paragraphs in the uploaded \ document and assigns them to the respective indicator from the NDC \ Explorer. Currently, the NDC Explorer has 20 indicators under \ climate change mitigation (e.g., fossil fuel production, REDD+) and \ 22 indicators under climate change adaptation (e.g., sea level rise,\ investment needs). The assignment of the paragraph to a corresponding\ indicator is based on vector similarities in which top 3 results if found are shown to the user. """) st.write("") col1,col2= st.columns(2) with col1: st.caption("OCR File processing") # st.markdown('
50 sec
', unsafe_allow_html=True) st.write("50 sec") with col2: st.caption("NDC comparison on 200 paragraphs(~ 35 pages)") # st.markdown('
12 sec
', unsafe_allow_html=True) st.write("140 sec") with st.sidebar: option = st.selectbox('Select Country', (countrynames)) countryCode = countryList[option] st.markdown("---") genre = st.radio( "Select Category",('Climate Change Adaptation', 'Climate Change Mitigation')) st.markdown("---") with st.container(): if st.button("Compare with NDC"): sent_cca = countrySpecificCCA(cca_sent,1,countryCode) sent_ccm = countrySpecificCCM(ccm_sent,1,countryCode) if 'filepath' in st.session_state: allDocuments = runSemanticPreprocessingPipeline( file_path= st.session_state['filepath'], file_name = st.session_state['filename'], split_by=split_by, split_length= split_length, split_overlap=split_overlap, remove_punc= remove_punc, split_respect_sentence_boundary=split_respect_sentence_boundary) # genre = st.radio( "Select Category",('Climate Change Adaptation', 'Climate Change Mitigation')) if genre == 'Climate Change Adaptation': sent_dict = sent_cca else: sent_dict = sent_ccm sent_labels = [] for key,sent in sent_dict.items(): sent_labels.append(sent) if len(allDocuments['documents']) > 100: warning_msg = ": This might take sometime, please sit back and relax." else: warning_msg = "" logging.info("starting Coherence analysis, \ country selected {}".format(option)) with st.spinner("Performing Coherence Analysis for {} \ under {} category{}".format(option,genre,warning_msg)): semanticsearch_pipeline, doc_store = semanticSearchPipeline(documents = allDocuments['documents'], embedding_model= embedding_model, embedding_layer= embedding_layer, embedding_model_format= embedding_model_format, retriever_top_k= retriever_top_k, embedding_dim=embedding_dim, max_seq_len=max_seq_len, useQueryCheck=False) raw_output = runSemanticPipeline(pipeline=semanticsearch_pipeline,queries=sent_labels) results_df = process_semantic_output(raw_output) results_df = results_df.drop(['answer','answer_offset', 'context_offset','context','reader_score','id'], axis = 1) for i,key in enumerate(list(sent_dict.keys())): st.subheader("Relevant paragraphs for topic: {}".format(key)) df = results_df[results_df['query']==sent_dict[key]].reset_index(drop=True) for j in range(3): st.write('Result {}.'.format(j+1)) st.write(df.loc[j]['content']+'\n') else: st.info("🤔 No document found, please try to upload it at the sidebar!") logging.warning("Terminated as no document provided")