# set path import glob, os, sys; sys.path.append('../utils') #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st from st_aggrid import AgGrid from st_aggrid.shared import ColumnsAutoSizeMode from utils.sdg_classifier import sdg_classification from utils.sdg_classifier import runSDGPreprocessingPipeline, load_sdgClassifier from utils.keyword_extraction import textrank import logging logger = logging.getLogger(__name__) from utils.checkconfig import getconfig # Declare all the necessary variables config = getconfig('paramconfig.cfg') model_name = config.get('sdg','MODEL') split_by = config.get('sdg','SPLIT_BY') split_length = int(config.get('sdg','SPLIT_LENGTH')) split_overlap = int(config.get('sdg','SPLIT_OVERLAP')) remove_punc = bool(int(config.get('sdg','REMOVE_PUNC'))) split_respect_sentence_boundary = bool(int(config.get('sdg','RESPECT_SENTENCE_BOUNDARY'))) threshold = float(config.get('sdg','THRESHOLD')) top_n = int(config.get('sdg','TOP_KEY')) def app(): #### APP INFO ##### with st.container(): st.markdown("

SDG Classification and Keyphrase Extraction

", unsafe_allow_html=True) st.write(' ') st.write(' ') with st.expander("ℹ️ - About this app", expanded=False): st.write( """ The *SDG Analysis* app is an easy-to-use interface built \ in Streamlit for analyzing policy documents with respect to SDG \ Classification for the paragraphs/texts in the document and \ extracting the keyphrase per SDG label - developed by GIZ Data \ and the Sustainable Development Solution Network. \n """) st.write("""**Document Processing:** The Uploaded/Selected document is \ automatically cleaned and split into paragraphs with a maximum \ length of 120 words using a Haystack preprocessing pipeline. The \ length of 120 is an empirical value which should reflect the length \ of a “context” and should limit the paragraph length deviation. \ However, since we want to respect the sentence boundary the limit \ can breach and hence this limit of 120 is tentative. \n """) st.write("""**SDG cLassification:** The application assigns paragraphs \ to 15 of the 17 United Nations Sustainable Development Goals (SDGs).\ SDG 16 “Peace, Justice and Strong Institutions” and SDG 17 \ “Partnerships for the Goals” are excluded from the analysis due to \ their broad nature which could potentially inflate the results. \ Each paragraph is assigned to one SDG only. Again, the results are \ displayed in a summary table including the number of the SDG, a \ relevancy score highlighted through a green color shading, and the \ respective text of the analyzed paragraph. Additionally, a pie \ chart with a blue color shading is displayed which illustrates the \ three most prominent SDGs in the document. The SDG classification \ uses open-source training [data](https://zenodo.org/record/5550238#.Y25ICHbMJPY) \ from [OSDG.ai](https://osdg.ai/) which is a global \ partnerships and growing community of researchers and institutions \ interested in the classification of research according to the \ Sustainable Development Goals. The summary table only displays \ paragraphs with a calculated relevancy score above 85%. \n""") st.write("""**Keyphrase Extraction:** The application extracts 15 \ keyphrases from the document, for each SDG label and displays the \ results in a summary table. The keyphrases are extracted using \ using [Textrank](https://github.com/summanlp/textrank)\ which is an easy-to-use computational less expensive \ model leveraging combination of TFIDF and Graph networks. """) st.write("") st.write("") st.markdown("Some runtime metrics tested with cpu: Intel(R) Xeon(R) CPU @ 2.20GHz, memory: 13GB") col1,col2,col3,col4 = st.columns([2,2,4,4]) with col1: st.caption("Loading Time Classifier") # st.markdown('
12 sec
', unsafe_allow_html=True) st.write("12 sec") with col2: st.caption("OCR File processing") # st.markdown('
50 sec
', unsafe_allow_html=True) st.write("50 sec") with col3: st.caption("SDG Classification of 200 paragraphs(~ 35 pages)") # st.markdown('
120 sec
', unsafe_allow_html=True) st.write("120 sec") with col4: st.caption("Keyword extraction for 200 paragraphs(~ 35 pages)") # st.markdown('
3 sec
', unsafe_allow_html=True) st.write("3 sec") ### Main app code ### with st.container(): if st.button("RUN SDG Analysis"): if 'filepath' in st.session_state: file_name = st.session_state['filename'] file_path = st.session_state['filepath'] classifier = load_sdgClassifier(classifier_name=model_name) st.session_state['sdg_classifier'] = classifier all_documents = runSDGPreprocessingPipeline(file_name= file_name, file_path= file_path, split_by= split_by, split_length= split_length, split_respect_sentence_boundary= split_respect_sentence_boundary, split_overlap= split_overlap, remove_punc= remove_punc) if len(all_documents['documents']) > 100: warning_msg = ": This might take sometime, please sit back and relax." else: warning_msg = "" with st.spinner("Running SDG Classification{}".format(warning_msg)): df, x = sdg_classification(haystack_doc=all_documents['documents'], threshold= threshold) df = df.drop(['Relevancy'], axis = 1) sdg_labels = x.SDG.unique() textrank_keyword_list = [] for label in sdg_labels: sdgdata = " ".join(df[df.SDG == label].text.to_list()) textranklist_ = textrank(textdata=sdgdata, words= top_n) if len(textranklist_) > 0: textrank_keyword_list.append({'SDG':label, 'TextRank Keywords':",".join(textranklist_)}) textrank_keywords_df = pd.DataFrame(textrank_keyword_list) plt.rcParams['font.size'] = 25 colors = plt.get_cmap('Blues')(np.linspace(0.2, 0.7, len(x))) # plot fig, ax = plt.subplots() ax.pie(x['count'], colors=colors, radius=2, center=(4, 4), wedgeprops={"linewidth": 1, "edgecolor": "white"}, textprops={'fontsize': 14}, frame=False,labels =list(x.SDG_Num), labeldistance=1.2) # fig.savefig('temp.png', bbox_inches='tight',dpi= 100) st.markdown("#### Anything related to SDGs? ####") c4, c5, c6 = st.columns([1,2,2]) with c5: st.pyplot(fig) with c6: labeldf = x['SDG_name'].values.tolist() labeldf = "
".join(labeldf) st.markdown(labeldf, unsafe_allow_html=True) st.write("") st.markdown("###### What keywords are present under SDG classified text? ######") AgGrid(textrank_keywords_df, reload_data = False, update_mode="value_changed", columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS) st.write("") st.markdown("###### Top few SDG Classified paragraph/text results ######") AgGrid(df, reload_data = False, update_mode="value_changed", columns_auto_size_mode = ColumnsAutoSizeMode.FIT_CONTENTS) else: st.info("🤔 No document found, please try to upload it at the sidebar!") logging.warning("Terminated as no document provided")