# set path import glob, os, sys; sys.path.append('../utils') #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st from utils.target_classifier import load_targetClassifier, target_classification import logging logger = logging.getLogger(__name__) from utils.config import get_classifier_params from utils.preprocessing import paraLengthCheck from io import BytesIO import xlsxwriter import plotly.express as px from utils.target_classifier import label_dict from appStore.rag import run_query # Declare all the necessary variables classifier_identifier = 'target' params = get_classifier_params(classifier_identifier) @st.cache_data def to_excel(df,sectorlist): len_df = len(df) output = BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') df.to_excel(writer, index=False, sheet_name='Sheet1') workbook = writer.book worksheet = writer.sheets['Sheet1'] worksheet.data_validation('S2:S{}'.format(len_df), {'validate': 'list', 'source': ['No', 'Yes', 'Discard']}) worksheet.data_validation('X2:X{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) worksheet.data_validation('T2:T{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) worksheet.data_validation('U2:U{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) worksheet.data_validation('V2:V{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) worksheet.data_validation('W2:U{}'.format(len_df), {'validate': 'list', 'source': sectorlist + ['Blank']}) writer.save() processed_data = output.getvalue() return processed_data def app(): ### Main app code ### with st.container(): if 'key1' in st.session_state: # Load the existing dataset df = st.session_state.key1 # Filter out all paragraphs that do not have a reference to groups df = df[df['Vulnerability Label'].apply(lambda x: len(x) > 0 and 'Other' not in x)] # Load the classifier model classifier = load_targetClassifier(classifier_name=params['model_name']) st.session_state['{}_classifier'.format(classifier_identifier)] = classifier df = target_classification(haystack_doc=df, threshold= params['threshold']) # Rename column df.rename(columns={'Target Label': 'Specific action/target/measure mentioned'}, inplace=True) st.session_state.key2 = df def target_display(model_sel_name): ### TABLE Output ### # Assign dataframe a name df = st.session_state['key2'] st.write(df) ### RAG Output by group ## # Expand the DataFrame df_expand = ( df.query("`Specific action/target/measure mentioned` == 'YES'") .explode('Vulnerability Label') ) # Group by 'Vulnerability Label' and concatenate 'text' df_agg = df_expand.groupby('Vulnerability Label')['text'].agg('; '.join).reset_index() # st.write(df_agg) st.markdown("----") st.markdown('**DOCUMENT FINDINGS SUMMARY BY VULNERABILITY LABEL:**') # construct RAG query for each label, send to openai and process response for i in range(0,len(df_agg)): st.write(df_agg['Vulnerability Label'].iloc[i]) run_query(context = df_agg['text'].iloc[i], label = df_agg['Vulnerability Label'].iloc[i], model_sel_name=model_sel_name)