|
import os |
|
from uuid import uuid4 |
|
|
|
import torch |
|
from PIL import Image |
|
from controlnet_aux import HEDdetector |
|
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler |
|
from flask import Flask, request, send_file |
|
from transformers import BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering |
|
from transformers import pipeline |
|
|
|
app = Flask('chatgpt-plugin-extras') |
|
|
|
|
|
class VitGPT2: |
|
def __init__(self, device): |
|
print(f"Initializing VitGPT2 ImageCaptioning to {device}") |
|
self.pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") |
|
|
|
def inference(self, image_path): |
|
captions = self.pipeline(image_path)[0]['generated_text'] |
|
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}") |
|
return captions |
|
|
|
|
|
class ImageCaptioning: |
|
def __init__(self, device): |
|
print(f"Initializing ImageCaptioning to {device}") |
|
self.device = device |
|
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 |
|
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
self.model = BlipForConditionalGeneration.from_pretrained( |
|
"Salesforce/blip-image-captioning-large", torch_dtype=self.torch_dtype).to(self.device) |
|
|
|
def inference(self, image_path): |
|
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype) |
|
out = self.model.generate(**inputs) |
|
captions = self.processor.decode(out[0], skip_special_tokens=True) |
|
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}") |
|
return captions |
|
|
|
|
|
class VQA: |
|
def __init__(self, device): |
|
print(f"Initializing Visual QA to {device}") |
|
self.device = device |
|
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 |
|
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") |
|
self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base", |
|
torch_dtype=self.torch_dtype).to(self.device) |
|
|
|
def inference(self, image_path, question): |
|
inputs = self.processor(Image.open(image_path), question, return_tensors="pt").to(self.device, self.torch_dtype) |
|
out = self.model.generate(**inputs) |
|
answers = self.processor.decode(out[0], skip_special_tokens=True) |
|
print(f"\nProcessed Visual QA, Input Image: {image_path}, Output Text: {answers}") |
|
return answers |
|
|
|
|
|
class Image2Hed: |
|
def __init__(self, device): |
|
print("Initializing Image2Hed") |
|
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') |
|
|
|
def inference(self, inputs, output_filename): |
|
output_path = os.path.join('data', output_filename) |
|
image = Image.open(inputs) |
|
hed = self.detector(image) |
|
hed.save(output_path) |
|
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {output_path}") |
|
return '/result/' + output_filename |
|
|
|
|
|
class Image2Scribble: |
|
def __init__(self, device): |
|
print("Initializing Image2Scribble") |
|
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') |
|
|
|
def inference(self, inputs, output_filename): |
|
output_path = os.path.join('data', output_filename) |
|
image = Image.open(inputs) |
|
hed = self.detector(image, scribble=True) |
|
hed.save(output_path) |
|
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {output_path}") |
|
return '/result/' + output_filename |
|
|
|
class InstructPix2Pix: |
|
def __init__(self, device): |
|
print(f"Initializing InstructPix2Pix to {device}") |
|
self.device = device |
|
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 |
|
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", |
|
safety_checker=None, |
|
torch_dtype=self.torch_dtype).to(device) |
|
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) |
|
|
|
def inference(self, image_path, text, output_filename): |
|
"""Change style of image.""" |
|
print("===>Starting InstructPix2Pix Inference") |
|
original_image = Image.open(image_path) |
|
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0] |
|
output_path = os.path.join('data', output_filename) |
|
image.save(output_path) |
|
|
|
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, " |
|
f"Output Image: {output_path}") |
|
return '/result/' + output_path |
|
|
|
@app.route('/result/<filename>') |
|
def get_result(filename): |
|
file_path = os.path.join('data', filename) |
|
return send_file(file_path, mimetype='image/png') |
|
|
|
|
|
ic = ImageCaptioning("cpu") |
|
vqa = VQA("cpu") |
|
i2h = Image2Hed("cpu") |
|
i2s = Image2Scribble("cpu") |
|
|
|
|
|
|
|
@app.route('/image2hed', methods=['POST']) |
|
def imag2hed(): |
|
file = request.files['file'] |
|
filename = str(uuid4()) + '.png' |
|
filepath = os.path.join('data', 'upload', filename) |
|
file.save(filepath) |
|
output_filename = str(uuid4()) + '.png' |
|
result = i2h.inference(filepath, output_filename) |
|
return result |
|
|
|
|
|
@app.route('/image2Scribble', methods=['POST']) |
|
def image2Scribble(): |
|
file = request.files['file'] |
|
filename = str(uuid4()) + '.png' |
|
filepath = os.path.join('data', 'upload', filename) |
|
file.save(filepath) |
|
output_filename = str(uuid4()) + '.png' |
|
result = i2s.inference(filepath, output_filename) |
|
return result |
|
|
|
|
|
@app.route('/image-captioning', methods=['POST']) |
|
def image_caption(): |
|
file = request.files['file'] |
|
filename = str(uuid4()) + '.png' |
|
filepath = os.path.join('data', 'upload', filename) |
|
file.save(filepath) |
|
|
|
result2 = ic.inference(filepath) |
|
return result2 |
|
|
|
|
|
@app.route('/visual-qa', methods=['POST']) |
|
def visual_qa(): |
|
file = request.files['file'] |
|
filename = str(uuid4()) + '.png' |
|
filepath = os.path.join('data', 'upload', filename) |
|
file.save(filepath) |
|
question = request.args.get('q') |
|
result = vqa.inference(filepath, question=question) |
|
return result |
|
|
|
@app.route('/instruct-pix2pix', methods=['POST']) |
|
def InstructPix2Pix(): |
|
file = request.files['file'] |
|
filename = str(uuid4()) + '.png' |
|
filepath = os.path.join('data', 'upload', filename) |
|
file.save(filepath) |
|
output_filename = str(uuid4()) + '.png' |
|
question = request.args.get('t') |
|
result = ip2p.inference(filepath, question, output_filename) |
|
return result |
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0') |
|
|