Gampanut's picture
Update app.py
e709ac4 verified
raw
history blame
9.31 kB
import gradio as gr
from langchain_groq import ChatGroq
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph
from langchain.chains import GraphQAChain
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Pinecone
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain_core.documents import Document
from neo4j import GraphDatabase
import networkx as nx
import pinecone
import os
import os
from datetime import datetime
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from typing import Optional, List, Dict, Any
from pydantic import BaseModel, Field
import time
import tracemalloc
# Custom Configuration for Pydantic
class Config:
arbitrary_types_allowed = True
# Define base models for type validation
class CustomDocument(BaseModel):
page_content: str
metadata: Dict[str, Any] = Field(default_factory=dict)
class Config(Config):
pass
os.system("pip install sentence-transformers")
os.system("pip install gspread oauth2client")
os.system("pip install -U langchain-huggingface langchain-community")
# Google Sheets Setup
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name(r"./gen-lang-client-0300122402-f2f67b3e8c27.json", scope)
client = gspread.authorize(creds)
spreadsheet_id = "10953i4ZOhvpNAyyrFdo-4TvVwfVWppt0H2xXM7yYQF4"
sheet = client.open_by_key(spreadsheet_id).sheet1
def store_feedback_in_sheet(feedback, question, rag_response, graphrag_response):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
row = [timestamp, question, rag_response, graphrag_response, feedback]
sheet.append_row(row)
def load_data():
data = sheet.get_all_records()
return data[-10:], len(data)
def add_review(question, rag_response, graphrag_response, feedback):
store_feedback_in_sheet(feedback, question, rag_response, graphrag_response)
return load_data()
# RAG Setup
text_path = r"./text_chunks.txt"
loader = TextLoader(text_path, encoding='utf-8')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=3000, chunk_overlap=4)
docs = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings()
# Hugging Face Setup
repo_id = "meta-llama/Meta-Llama-3-8B"
llm = HuggingFaceHub(
repo_id=repo_id,
model_kwargs={"temperature": 0.8, "top_k": 50},
huggingfacehub_api_token=os.getenv('HUGGINGFACEHUB_API_TOKEN')
)
# Pinecone Setup
pinecone.init(
api_key=os.getenv('PINECONE_API_KEY', '6396a319-9bc0-49b2-97ba-400e96eff377'),
environment='gcp-starter'
)
index_name = "langchain-demo"
if index_name not in pinecone.list_indexes():
pinecone.create_index(name=index_name, metric="cosine", dimension=768)
docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)
else:
docsearch = Pinecone.from_existing_index(index_name, embeddings)
# Setup LLMs
rag_llm = ChatGroq(
model="Llama3-8b-8192",
temperature=0,
groq_api_key='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'
)
template = """
You are a Thai rice assistant. These humans will ask you questions about Thai rice.
Answer the question only in Thai language.
Use the following piece of context to answer the question.
If you don't know the answer, just say you don't know.
Keep the answer within 2 sentences and concise.
Context: {context}
Question: {question}
Answer:
"""
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
# Modified RAG chain setup
def get_context(question: str) -> str:
docs = docsearch.similarity_search(question)
return " ".join([doc.page_content for doc in docs])
def get_rag_response(question: str) -> str:
context = get_context(question)
response = rag_llm.predict(prompt.format(context=context, question=question))
return response
# Graph RAG Setup
graphrag_llm = ChatGroq(
model="Llama3-8b-8192",
temperature=0,
groq_api_key='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'
)
# Neo4j Setup
uri = "neo4j+s://86a1bbb8.databases.neo4j.io"
user = "neo4j"
password = "zURGb3tO9VFtKxPEw98WrQnphvJQbBDofDM9uG3O8O8"
driver = GraphDatabase.driver(uri, auth=(user, password))
def fetch_nodes(tx):
query = "MATCH (n) RETURN id(n) AS id, labels(n) AS labels"
result = tx.run(query)
return result.data()
def fetch_relationships(tx):
query = "MATCH (n)-[r]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS relation"
result = tx.run(query)
return result.data()
def populate_networkx_graph():
G = nx.Graph()
with driver.session() as session:
nodes = session.execute_read(fetch_nodes)
relationships = session.execute_read(fetch_relationships)
for node in nodes:
G.add_node(node['id'], labels=node['labels'])
for relationship in relationships:
G.add_edge(
relationship['source'],
relationship['target'],
relation=relationship['relation']
)
return G
networkx_graph = populate_networkx_graph()
graph = NetworkxEntityGraph()
graph._graph = networkx_graph
graphrag_chain = GraphQAChain.from_llm(
llm=graphrag_llm,
graph=graph,
verbose=True
)
# Define functions to measure memory and time
def measure_memory_and_time(func):
def wrapper(*args, **kwargs):
tracemalloc.start() # Start memory tracking
start_time = time.time() # Start time tracking
result = func(*args, **kwargs)
current, peak = tracemalloc.get_traced_memory() # Get memory usage
tracemalloc.stop()
end_time = time.time() # End time tracking
elapsed_time = end_time - start_time # Calculate elapsed time
return result, elapsed_time, peak / 1024 # Convert memory to KB
return wrapper
# Modified functions to use memory and time measurement
@measure_memory_and_time
def get_rag_response(question: str) -> str:
context = get_context(question)
response = rag_llm.predict(prompt.format(context=context, question=question))
return response
@measure_memory_and_time
def get_graphrag_response(question: str) -> str:
system_prompt = "You are a Thai rice assistant that gives concise and direct answers. Do not explain the process, just provide the answer, provide the answer only in Thai."
formatted_question = f"System Prompt: {system_prompt}\n\nQuestion: {question}"
response = graphrag_chain.run(formatted_question)
return response
# Modify compare_models to collect and display metrics
def compare_models(question: str) -> dict:
rag_response, rag_time, rag_memory = get_rag_response(question)
graphrag_response, graphrag_time, graphrag_memory = get_graphrag_response(question)
# Combine responses with metrics
results = {
"RAG Response": rag_response,
"RAG Time (s)": round(rag_time, 2),
"RAG Memory (KB)": round(rag_memory, 2),
"GraphRAG Response": graphrag_response,
"GraphRAG Time (s)": round(graphrag_time, 2),
"GraphRAG Memory (KB)": round(graphrag_memory, 2),
}
return results
# Gradio Interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
question_input = gr.Textbox(label="ถามคำถามเกี่ยวกับข้าว:", placeholder="Enter your question about Thai rice")
submit_btn = gr.Button(value="ถาม")
rag_output = gr.Textbox(label="RAG Response", interactive=False)
rag_time_output = gr.Textbox(label="RAG Time (s)", interactive=False)
rag_memory_output = gr.Textbox(label="RAG Memory (KB)", interactive=False)
graphrag_output = gr.Textbox(label="GraphRAG Response", interactive=False)
graphrag_time_output = gr.Textbox(label="GraphRAG Time (s)", interactive=False)
graphrag_memory_output = gr.Textbox(label="GraphRAG Memory (KB)", interactive=False)
feedback = gr.Radio(label="Which response is better?", choices=["A ดีกว่า", "B ดีกว่า", "เท่ากัน", "แย่ทั้งคู่"])
submit_feedback = gr.Button(value="Submit Feedback")
# Update Gradio app with time and memory results
def display_results(question):
results = compare_models(question)
return (
results["RAG Response"], results["RAG Time (s)"], results["RAG Memory (KB)"],
results["GraphRAG Response"], results["GraphRAG Time (s)"], results["GraphRAG Memory (KB)"]
)
# Event handlers
submit_btn.click(
fn=display_results,
inputs=[question_input],
outputs=[rag_output, rag_time_output, rag_memory_output, graphrag_output, graphrag_time_output, graphrag_memory_output]
)
submit_feedback.click(fn=add_review, inputs=[question_input, rag_output, graphrag_output, feedback])
demo.load(fn=load_data, inputs=None)
# Launch the app
if __name__ == "__main__":
demo.launch()