Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,13 @@ import gradio as gr
|
|
2 |
from langchain_groq import ChatGroq
|
3 |
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph
|
4 |
from langchain.chains import GraphQAChain
|
5 |
-
from langchain_community.document_loaders import TextLoader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
-
from langchain_community.vectorstores import Pinecone
|
8 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.schema.runnable import RunnablePassthrough
|
10 |
from langchain.schema.output_parser import StrOutputParser
|
11 |
-
from
|
12 |
from langchain_core.documents import Document
|
13 |
from neo4j import GraphDatabase
|
14 |
import networkx as nx
|
@@ -18,7 +18,6 @@ from datetime import datetime
|
|
18 |
import gspread
|
19 |
from oauth2client.service_account import ServiceAccountCredentials
|
20 |
|
21 |
-
# Install the missing package
|
22 |
os.system("pip install sentence-transformers")
|
23 |
os.system("pip install gspread oauth2client")
|
24 |
|
@@ -35,27 +34,28 @@ def store_feedback_in_sheet(feedback, question, rag_response, graphrag_response)
|
|
35 |
row = [timestamp, question, rag_response, graphrag_response, feedback]
|
36 |
sheet.append_row(row)
|
37 |
|
38 |
-
#
|
39 |
-
def load_data():
|
40 |
-
data = sheet.get_all_records()
|
41 |
-
return data[-10:], len(data) # return the last 10 rows and total count
|
42 |
-
|
43 |
-
# Function to add review to Google Sheets
|
44 |
-
def add_review(question, rag_response, graphrag_response, feedback):
|
45 |
-
store_feedback_in_sheet(feedback, question, rag_response, graphrag_response)
|
46 |
-
return None, None # No output needed since we removed the data and count display
|
47 |
-
|
48 |
-
# Initialize the chatbot and other necessary setups
|
49 |
text_path = r"./text_chunks.txt"
|
50 |
loader = TextLoader(text_path, encoding='utf-8')
|
51 |
documents = loader.load()
|
52 |
text_splitter = CharacterTextSplitter(chunk_size=3000, chunk_overlap=4)
|
53 |
docs = text_splitter.split_documents(documents)
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
embeddings = HuggingFaceEmbeddings()
|
56 |
|
57 |
from langchain.llms import HuggingFaceHub
|
58 |
|
|
|
59 |
repo_id = "meta-llama/Meta-Llama-3-8B"
|
60 |
llm = HuggingFaceHub(
|
61 |
repo_id=repo_id,
|
@@ -85,9 +85,9 @@ rag_llm = ChatGroq(
|
|
85 |
)
|
86 |
|
87 |
template = """
|
88 |
-
You are a Thai rice
|
89 |
-
Answer the question only in Thai
|
90 |
-
Use following piece of context to answer the question.
|
91 |
If you don't know the answer, just say you don't know.
|
92 |
Keep the answer within 2 sentences and concise.
|
93 |
Context: {context}
|
@@ -107,25 +107,118 @@ rag_chain = (
|
|
107 |
| StrOutputParser()
|
108 |
)
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
def get_rag_response(question):
|
111 |
response = rag_chain.invoke(question)
|
112 |
return response
|
113 |
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
with gr.Blocks() as demo:
|
|
|
|
|
116 |
with gr.Row():
|
117 |
with gr.Column():
|
118 |
question_input = gr.Textbox(label="ถามคำถามเกี่ยวกับข้าว:")
|
119 |
submit_btn = gr.Button("ถาม")
|
|
|
|
|
120 |
rag_output = gr.Textbox(label="Model A", interactive=False)
|
121 |
graphrag_output = gr.Textbox(label="Model B", interactive=False)
|
122 |
|
|
|
123 |
with gr.Column():
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
submit_btn.click(
|
129 |
-
|
130 |
|
131 |
demo.launch(share=True)
|
|
|
2 |
from langchain_groq import ChatGroq
|
3 |
from langchain_community.graphs.networkx_graph import NetworkxEntityGraph
|
4 |
from langchain.chains import GraphQAChain
|
5 |
+
from langchain_community.document_loaders import TextLoader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain_community.vectorstores import Pinecone
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.schema.runnable import RunnablePassthrough
|
10 |
from langchain.schema.output_parser import StrOutputParser
|
11 |
+
from langchain import PromptTemplate
|
12 |
from langchain_core.documents import Document
|
13 |
from neo4j import GraphDatabase
|
14 |
import networkx as nx
|
|
|
18 |
import gspread
|
19 |
from oauth2client.service_account import ServiceAccountCredentials
|
20 |
|
|
|
21 |
os.system("pip install sentence-transformers")
|
22 |
os.system("pip install gspread oauth2client")
|
23 |
|
|
|
34 |
row = [timestamp, question, rag_response, graphrag_response, feedback]
|
35 |
sheet.append_row(row)
|
36 |
|
37 |
+
# RAG Setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
text_path = r"./text_chunks.txt"
|
39 |
loader = TextLoader(text_path, encoding='utf-8')
|
40 |
documents = loader.load()
|
41 |
text_splitter = CharacterTextSplitter(chunk_size=3000, chunk_overlap=4)
|
42 |
docs = text_splitter.split_documents(documents)
|
43 |
|
44 |
+
class CustomTextLoader(TextLoader):
|
45 |
+
def __init__(self, file_path: str, encoding: str = 'utf-8'):
|
46 |
+
super().__init__(file_path)
|
47 |
+
self.encoding = encoding
|
48 |
+
|
49 |
+
def load(self):
|
50 |
+
with open(self.file_path, encoding=self.encoding) as f:
|
51 |
+
text = f.read()
|
52 |
+
return [Document(page_content=text)]
|
53 |
+
|
54 |
embeddings = HuggingFaceEmbeddings()
|
55 |
|
56 |
from langchain.llms import HuggingFaceHub
|
57 |
|
58 |
+
# Define the repo ID and connect to Mixtral model on Huggingface
|
59 |
repo_id = "meta-llama/Meta-Llama-3-8B"
|
60 |
llm = HuggingFaceHub(
|
61 |
repo_id=repo_id,
|
|
|
85 |
)
|
86 |
|
87 |
template = """
|
88 |
+
You are a Thai rice assistant. These humans will ask you questions about Thai rice.
|
89 |
+
Answer the question only in Thai language.
|
90 |
+
Use the following piece of context to answer the question.
|
91 |
If you don't know the answer, just say you don't know.
|
92 |
Keep the answer within 2 sentences and concise.
|
93 |
Context: {context}
|
|
|
107 |
| StrOutputParser()
|
108 |
)
|
109 |
|
110 |
+
class ChatBot():
|
111 |
+
loader = CustomTextLoader(r"./text_chunks.txt", encoding='utf-8')
|
112 |
+
documents = loader.load()
|
113 |
+
|
114 |
+
rag_chain = (
|
115 |
+
{"context": docsearch.as_retriever(), "question": RunnablePassthrough()}
|
116 |
+
| prompt
|
117 |
+
| llm
|
118 |
+
| StrOutputParser()
|
119 |
+
)
|
120 |
+
|
121 |
+
graphrag_llm = ChatGroq(
|
122 |
+
model="Llama3-8b-8192",
|
123 |
+
temperature=0,
|
124 |
+
max_tokens=None,
|
125 |
+
timeout=None,
|
126 |
+
max_retries=5,
|
127 |
+
groq_api_key='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'
|
128 |
+
)
|
129 |
+
|
130 |
+
uri = "neo4j+s://46084f1a.databases.neo4j.io"
|
131 |
+
user = "neo4j"
|
132 |
+
password = "FwnX0ige_QYJk8eEYSXSF0l081mWWGIS7TFg6t8rLZc"
|
133 |
+
driver = GraphDatabase.driver(uri, auth=(user, password))
|
134 |
+
|
135 |
+
def fetch_nodes(tx):
|
136 |
+
query = "MATCH (n) RETURN id(n) AS id, labels(n) AS labels"
|
137 |
+
result = tx.run(query)
|
138 |
+
return result.data()
|
139 |
+
|
140 |
+
def fetch_relationships(tx):
|
141 |
+
query = "MATCH (n)-[r]->(m) RETURN id(n) AS source, id(m) AS target, type(r) AS relation"
|
142 |
+
result = tx.run(query)
|
143 |
+
return result.data()
|
144 |
+
|
145 |
+
def populate_networkx_graph():
|
146 |
+
G = nx.Graph()
|
147 |
+
with driver.session() as session:
|
148 |
+
nodes = session.read_transaction(fetch_nodes)
|
149 |
+
relationships = session.read_transaction(fetch_relationships)
|
150 |
+
for node in nodes:
|
151 |
+
G.add_node(node['id'], labels=node['labels'])
|
152 |
+
for relationship in relationships:
|
153 |
+
G.add_edge(
|
154 |
+
relationship['source'],
|
155 |
+
relationship['target'],
|
156 |
+
relation=relationship['relation']
|
157 |
+
)
|
158 |
+
return G
|
159 |
+
|
160 |
+
networkx_graph = populate_networkx_graph()
|
161 |
+
graph = NetworkxEntityGraph()
|
162 |
+
graph._graph = networkx_graph
|
163 |
+
|
164 |
+
graphrag_chain = GraphQAChain.from_llm(
|
165 |
+
llm=graphrag_llm,
|
166 |
+
graph=graph,
|
167 |
+
verbose=True
|
168 |
+
)
|
169 |
+
|
170 |
def get_rag_response(question):
|
171 |
response = rag_chain.invoke(question)
|
172 |
return response
|
173 |
|
174 |
+
def get_graphrag_response(question):
|
175 |
+
system_prompt = "You are a Thai rice assistant that gives concise and direct answers. Do not explain the process, just provide the answer, provide the answer only in Thai."
|
176 |
+
formatted_question = f"System Prompt: {system_prompt}\n\nQuestion: {question}"
|
177 |
+
response = graphrag_chain.run(formatted_question)
|
178 |
+
return response
|
179 |
+
|
180 |
+
def compare_models(question):
|
181 |
+
rag_response = get_rag_response(question)
|
182 |
+
graphrag_response = get_graphrag_response(question)
|
183 |
+
return rag_response, graphrag_response
|
184 |
+
|
185 |
+
def handle_feedback(feedback, question, rag_response, graphrag_response):
|
186 |
+
try:
|
187 |
+
store_feedback_in_sheet(feedback, question, rag_response, graphrag_response)
|
188 |
+
return "ส่งสำเร็จ!"
|
189 |
+
except Exception as e:
|
190 |
+
return f"Error: {e}"
|
191 |
+
|
192 |
with gr.Blocks() as demo:
|
193 |
+
gr.Markdown("## Thai Rice Assistant A/B Testing")
|
194 |
+
|
195 |
with gr.Row():
|
196 |
with gr.Column():
|
197 |
question_input = gr.Textbox(label="ถามคำถามเกี่ยวกับข้าว:")
|
198 |
submit_btn = gr.Button("ถาม")
|
199 |
+
|
200 |
+
with gr.Column():
|
201 |
rag_output = gr.Textbox(label="Model A", interactive=False)
|
202 |
graphrag_output = gr.Textbox(label="Model B", interactive=False)
|
203 |
|
204 |
+
with gr.Row():
|
205 |
with gr.Column():
|
206 |
+
choice = gr.Radio(["A ดีกว่า", "B ดีกว่า", "เท่ากัน", "แย่ทั้งคู่"], label="คำตอบไหนดีกว่ากัน?")
|
207 |
+
send_feedback_btn = gr.Button("ส่ง")
|
208 |
+
|
209 |
+
feedback_output = gr.Textbox(label="Feedback Status", interactive=False)
|
210 |
+
|
211 |
+
def on_submit(question):
|
212 |
+
rag_response, graphrag_response = compare_models(question)
|
213 |
+
return rag_response, graphrag_response
|
214 |
+
|
215 |
+
def on_feedback(feedback):
|
216 |
+
question = question_input.value
|
217 |
+
rag_response = rag_output.value
|
218 |
+
graphrag_response = graphrag_output.value
|
219 |
+
return handle_feedback(feedback, question, rag_response, graphrag_response)
|
220 |
|
221 |
+
submit_btn.click(on_submit, inputs=[question_input], outputs=[rag_output, graphrag_output])
|
222 |
+
send_feedback_btn.click(on_feedback, inputs=[choice], outputs=[feedback_output])
|
223 |
|
224 |
demo.launch(share=True)
|