SkalskiP's picture
Added `top_k` & `top_p`
42be940
raw
history blame
6.12 kB
from typing import List, Tuple, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
TITLE = """<h1 align="center">Gemini Playground 💬</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision API</h2>"""
DUPLICATE = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<a href="https://huggingface.co/spaces/SkalskiP/ChatGemini?duplicate=true">
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
</a>
<span>Duplicate the Space and run securely with your
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
</span>
</div>
"""
print("google-generativeai:", genai.__version__)
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
if not stop_sequences:
return None
return [sequence.strip() for sequence in stop_sequences.split(",")]
def predict(
google_key: str,
text_prompt: str,
image_prompt: Optional[Image.Image],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: List[Tuple[str, str]]
) -> Tuple[str, List[Tuple[str, str]]]:
if not google_key:
raise ValueError(
"GOOGLE_API_KEY is not set. "
"Please follow the instructions in the README to set it up.")
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=top_k,
top_p=top_p)
if image_prompt is None:
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(
text_prompt,
stream=True,
generation_config=generation_config)
response.resolve()
else:
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content(
[text_prompt, image_prompt],
stream=True,
generation_config=generation_config)
response.resolve()
chatbot.append((text_prompt, response.text))
return "", chatbot
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
value="",
type="password",
placeholder="...",
info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
)
image_prompt_component = gr.Image(type="pil", label="Image", scale=1)
chatbot_component = gr.Chatbot(label='Gemini', scale=2)
text_prompt_component = gr.Textbox(
placeholder="Hi there!",
label="Ask me anything and press Enter"
)
run_button_component = gr.Button()
temperature_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.4,
step=0.05,
label="Temperature",
info=(
"Temperature controls the degree of randomness in token selection. Lower "
"temperatures are good for prompts that expect a true or correct response, "
"while higher temperatures can lead to more diverse or unexpected results. "
))
max_output_tokens_component = gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=1,
label="Token limit",
info=(
"Token limit determines the maximum amount of text output from one prompt. A "
"token is approximately four characters. The default value is 2048."
))
stop_sequences_component = gr.Textbox(
label="Add stop sequence",
value="",
type="text",
placeholder="STOP, END",
info=(
"A stop sequence is a series of characters (including spaces) that stops "
"response generation if the model encounters it. The sequence is not included "
"as part of the response. You can add up to five stop sequences."
))
top_k_component = gr.Slider(
minimum=1,
maximum=40,
value=32,
step=1,
label="Top-K",
info=(
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
"selected token is the most probable among all tokens in the model’s "
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
"next token is selected from among the 3 most probable tokens (using "
"temperature)."
))
top_p_component = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=0.01,
label="Top-P",
info=(
"Top-p changes how the model selects tokens for output. Tokens are selected "
"from most probable to least until the sum of their probabilities equals the "
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
"and .1 and the top-p value is .5, then the model will select either A or B as "
"the next token (using temperature). "
))
inputs = [
google_key_component,
text_prompt_component,
image_prompt_component,
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
chatbot_component
]
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
gr.HTML(DUPLICATE)
with gr.Column():
google_key_component.render()
with gr.Row():
image_prompt_component.render()
chatbot_component.render()
text_prompt_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=predict,
inputs=inputs,
outputs=[text_prompt_component, chatbot_component],
)
text_prompt_component.submit(
fn=predict,
inputs=inputs,
outputs=[text_prompt_component, chatbot_component],
)
demo.queue(max_size=99).launch(debug=True)