Geetansh commited on
Commit
6604d8f
1 Parent(s): 811f4a6

initial commit

Browse files
.gitignore ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Virtual environment folders
2
+ MLvenv/
3
+ venv/
4
+
5
+ # Node.js dependencies
6
+ node_modules/
7
+
8
+ # Python cache
9
+ __pycache__/
10
+ *.py[cod]
11
+ *.pyo
12
+
13
+ # Other common Python and IDE ignores
14
+ *.ipynb_checkpoints
15
+ *.env
16
+ .DS_Store
17
+ .idea/
18
+ .vscode/
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: Ebookify Backend2
3
- emoji: 🌖
4
- colorFrom: purple
5
- colorTo: red
6
  sdk: gradio
7
  sdk_version: 5.4.0
8
  app_file: app.py
 
1
  ---
2
+ title: Ebookify Backend
3
+ emoji:
4
+ colorFrom: green
5
+ colorTo: green
6
  sdk: gradio
7
  sdk_version: 5.4.0
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pdf_to_image
3
+ import image_to_text
4
+ from ml_engine.model_functions import is_it_title
5
+
6
+ def process_pdf(pdf):
7
+ # Ensure we get the correct path to the uploaded file
8
+ pdf_path = pdf.name # `pdf` is now a NamedString/TempFile with a `.name` attribute
9
+
10
+ pdf_pages_images = pdf_to_image.pdfToImg2(pdf_path)
11
+
12
+ pages = []
13
+ curr_pg = ""
14
+
15
+ for img in pdf_pages_images:
16
+ text = image_to_text.img2string(img)
17
+ for line in text.split("\n"):
18
+ if(len(line) == 0): continue
19
+ if(is_it_title(line)):
20
+ # print(f"TITLE FOUND: {line}") #Debug statement
21
+ if(len(curr_pg) != 0):
22
+ pages.append(curr_pg)
23
+ curr_pg = ""
24
+
25
+ curr_pg = (curr_pg + line + "\n")
26
+ pages.append(curr_pg)
27
+ # print(pages)
28
+ return pages # Returning a list of strings
29
+
30
+ # Gradio interface using latest syntax
31
+ with gr.Blocks() as demo:
32
+ gr.Markdown("# PDF to Pages Processor")
33
+ gr.Markdown("Upload a PDF and get a list of extracted pages as output.")
34
+
35
+ # pdf_input = gr.File(label="Upload a PDF", file_types=[".pdf"])
36
+ pdf_input = gr.File(label="Upload a PDF")
37
+ output = gr.JSON(label="Extracted Pages")
38
+
39
+ submit_button = gr.Button("Process PDF")
40
+
41
+ # Define interaction
42
+ submit_button.click(fn=process_pdf, inputs=pdf_input, outputs=output)
43
+
44
+ if __name__ == "__main__":
45
+ demo.launch()
image_to_text.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import pytesseract
3
+
4
+ # If you don't have tesseract executable in your PATH, include the following:
5
+ pytesseract.pytesseract.tesseract_cmd = r'C:\TesseractOCR\tesseract'
6
+
7
+ # Simple image to string
8
+ def img2string(imgPath):
9
+ textOfImage = pytesseract.image_to_string(imgPath)
10
+ return textOfImage
ml_engine/model_functions.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+
4
+ # Disk path where saved model & tokenizer is located
5
+ save_dir = (r"./ml_engine/saved-model") #relative path acc. to "ebookify-backend/" directory (i.e the root directory of the backend)
6
+
7
+ # Load the saved model and tokeniser from the disk
8
+ loaded_tokeniser = AutoTokenizer.from_pretrained(save_dir)
9
+ loaded_model = AutoModelForSequenceClassification.from_pretrained(save_dir)
10
+
11
+ def is_it_title(string):
12
+
13
+ # Input
14
+ input = loaded_tokeniser(string, return_tensors='pt')
15
+
16
+ with torch.no_grad():
17
+ output = loaded_model(**input).logits.item()
18
+ # print(output.logits.item())
19
+
20
+ if(output >= 0.6):
21
+ return True
22
+ else:
23
+ return False
24
+
25
+ if __name__ == "__main__":
26
+ print(is_it_title("Secret to Success lies in hardwork and nothing else!"))
ml_engine/saved-model/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
ml_engine/saved-model/config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-small",
3
+ "architectures": [
4
+ "DebertaV2ForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-07,
19
+ "max_position_embeddings": 512,
20
+ "max_relative_positions": -1,
21
+ "model_type": "deberta-v2",
22
+ "norm_rel_ebd": "layer_norm",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 6,
25
+ "pad_token_id": 0,
26
+ "pooler_dropout": 0,
27
+ "pooler_hidden_act": "gelu",
28
+ "pooler_hidden_size": 768,
29
+ "pos_att_type": [
30
+ "p2c",
31
+ "c2p"
32
+ ],
33
+ "position_biased_input": false,
34
+ "position_buckets": 256,
35
+ "relative_attention": true,
36
+ "share_att_key": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.46.0",
39
+ "type_vocab_size": 0,
40
+ "vocab_size": 128100
41
+ }
ml_engine/saved-model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e941da07dd4a4f884aae6082850988e36acfdb9a10cffa21922bd68c7bf20606
3
+ size 567595468
ml_engine/saved-model/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
ml_engine/saved-model/spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
ml_engine/saved-model/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
ml_engine/saved-model/tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }
ml_engine/saved-model/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4999cb1241c88dc93c2687149f19169521292eb1e5ca325d3a244469bb1602f9
3
+ size 5176
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ poppler-utils
pdf_to_image.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pdf2image import convert_from_path
2
+ from pdf2image.exceptions import (
3
+ PDFInfoNotInstalledError,
4
+ PDFPageCountError,
5
+ PDFSyntaxError
6
+ )
7
+
8
+ # poppler_path = r"./Poppler/poppler-24.07.0/Library/bin"
9
+
10
+ # def pdfToImg(pdfPath, outputPath):
11
+ # '''
12
+ # 1)Images stored in output folder
13
+ # 2)It returns path to stored images
14
+ # '''
15
+ # images_paths = convert_from_path(pdfPath, 200, outputPath, fmt="jpeg", poppler_path=poppler_path, paths_only=True)
16
+ # return images_paths
17
+
18
+ # def pdfToImg2(pdfPath):
19
+ # '''
20
+ # 1)Returns a list of Pillow images
21
+ # '''
22
+ # images = convert_from_path(pdfPath, 200, fmt="jpeg", poppler_path=poppler_path)
23
+ # return images
24
+
25
+ # Changed version of above code for deployment on huggingface spaces
26
+
27
+ def pdfToImg(pdfPath, outputPath):
28
+ '''
29
+ 1)Images stored in output folder
30
+ 2)It returns path to stored images
31
+ '''
32
+ images_paths = convert_from_path(pdfPath, 200, outputPath, fmt="jpeg", paths_only=True)
33
+ return images_paths
34
+
35
+ def pdfToImg2(pdfPath):
36
+ '''
37
+ 1)Returns a list of Pillow images
38
+ '''
39
+ images = convert_from_path(pdfPath, 200, fmt="jpeg")
40
+ return images
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ packaging==24.1
2
+ pdf2image==1.17.0
3
+ pillow==10.4.0
4
+ pytesseract==0.3.13
5
+ datasets==3.0.2
6
+ transformers==4.46.0
7
+ pandas==2.2.3
8
+ numpy==2.0.2
9
+ sentencepiece==0.2.0
10
+ tiktoken==0.8.0
11
+ torch==2.5.1
12
+ gradio==5.4.0