GenAILearniverse's picture
Create app.py
2617c83 verified
from diffusers import DiffusionPipeline
import torch
import streamlit as st
# pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
# pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
# sdxl_base_model_path = ("../Models/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots"
# "/462165984030d82259a11f4367a4eed129e94a7b")
#
# sdxl_refiner_model_path = ("../Models/models--stabilityai--stable-diffusion-xl-refiner-1.0/snapshots/"
# "5d4cfe854c9a9a87939ff3653551c2b3c99a4356")
@st.cache_resource
def load_pipeline():
# pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",
# torch_dtype=torch.float16 if device == "cuda" else torch.float32,
# use_safetensors=True,
# variant="fp16" if device =="cuda" else None)
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
variant="fp16" if device == "cuda" else None)
# if device == "cuda":
# pipe.to(device)
# else:
# pipe.enable_model_cpu_offload()
return pipe
def image_generation(pipe, prompt, negative_prompt):
try:
image = pipe(
prompt = prompt,
negative_prompt = "blurred, ugly, watermark, low resolution" + negative_prompt,
num_inference_steps= 20,
guidance_scale=9.0
).images[0]
return image
except Exception as e:
st.error(f"Error generating image: {str(e)}")
return None
import streamlit as st
# Define the table as a list of dictionaries with the provided data
table = [
{
"name": "sai-neonpunk",
"prompt": "neonpunk style . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured"
},
{
"name": "futuristic-retro cyberpunk",
"prompt": "retro cyberpunk. 80's inspired, synthwave, neon, vibrant, detailed, retro futurism",
"negative_prompt": "modern, desaturated, black and white, realism, low contrast"
},
{
"name": "Dark Fantasy",
"prompt": "Dark Fantasy Art, dark, moody, dark fantasy style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, bright, sunny"
},
{
"name": "Double Exposure",
"prompt": "Double Exposure Style, double image ghost effect, image combination, double exposure style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast"
}
]
# Convert the list of dictionaries to a dictionary with 'name' as key for easy lookup
styles_dict = {entry["name"]: entry for entry in table}
st.title("Application 11: @GenAiLearniverse Image Generation using SD XL")
prompt = st.text_input("Enter your Prompt", value="A futuristic superhero cat")
pipeline = load_pipeline()
# Dropdown for selecting a style
style_name = st.selectbox("Select a Style", options=list(styles_dict.keys()))
# Display the selected style's prompt and negative prompt
if style_name:
selected_entry = styles_dict[style_name]
selected_style_prompt = selected_entry["prompt"];
selected_style_negative_prompt = selected_entry["negative_prompt"]
if st.button("Generate Awesome Image"):
with st.spinner("Generating your awesome image..."):
image =image_generation(pipeline,prompt + selected_style_prompt, selected_style_negative_prompt)
if image:
st.image(image)