import gradio as gr | |
import torch | |
from diffusers import StableDiffusion3Pipeline | |
def image_generation(prompt): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipeline = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
text_encoder_3 =None, | |
tokenizer_3 =None) | |
pipeline.enable_model_cpu_offload() | |
# pipeline.to(device) | |
image = pipeline( | |
prompt=prompt, | |
negative_prompt="blurred, ugly, watermark, low resolution, blurry", | |
num_inference_steps=40, | |
height=1024, | |
width=1024, | |
guidance_scale=9.0 | |
).images[0] | |
return image | |
# image_generation("A magician cat doing spell") | |
interface= gr.Interface( | |
fn=image_generation, | |
inputs = gr.Textbox(lines=2, placeholder="Enter your Prompt..."), | |
outputs =gr.Image(type="pil"), | |
title ="@GenAiLearnivers Project 9: Image creation using Stable Diffusion 3 Model", | |
description="This application will be used to generate awesome images using SD3 model" | |
) | |
interface.launch() | |