from diffusers import DiffusionPipeline import torch import streamlit as st # pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") # pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0") # sdxl_base_model_path = ("../Models/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots" # "/462165984030d82259a11f4367a4eed129e94a7b") # # sdxl_refiner_model_path = ("../Models/models--stabilityai--stable-diffusion-xl-refiner-1.0/snapshots/" # "5d4cfe854c9a9a87939ff3653551c2b3c99a4356") @st.cache_resource def load_pipeline(): # pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", # torch_dtype=torch.float16 if device == "cuda" else torch.float32, # use_safetensors=True, # variant="fp16" if device =="cuda" else None) device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 if device == "cuda" else torch.float32, use_safetensors=True, variant="fp16" if device == "cuda" else None) # if device == "cuda": # pipe.to(device) # else: # pipe.enable_model_cpu_offload() return pipe def image_generation(pipe, prompt, negative_prompt): try: image = pipe( prompt = prompt, negative_prompt = "blurred, ugly, watermark, low resolution" + negative_prompt, num_inference_steps= 20, guidance_scale=9.0 ).images[0] return image except Exception as e: st.error(f"Error generating image: {str(e)}") return None import streamlit as st # Define the table as a list of dictionaries with the provided data table = [ { "name": "sai-neonpunk", "prompt": "neonpunk style . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured" }, { "name": "futuristic-retro cyberpunk", "prompt": "retro cyberpunk. 80's inspired, synthwave, neon, vibrant, detailed, retro futurism", "negative_prompt": "modern, desaturated, black and white, realism, low contrast" }, { "name": "Dark Fantasy", "prompt": "Dark Fantasy Art, dark, moody, dark fantasy style", "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, bright, sunny" }, { "name": "Double Exposure", "prompt": "Double Exposure Style, double image ghost effect, image combination, double exposure style", "negative_prompt": "ugly, deformed, noisy, blurry, low contrast" } ] # Convert the list of dictionaries to a dictionary with 'name' as key for easy lookup styles_dict = {entry["name"]: entry for entry in table} st.title("Application 11: @GenAiLearniverse Image Generation using SD XL") prompt = st.text_input("Enter your Prompt", value="A futuristic superhero cat") pipeline = load_pipeline() # Dropdown for selecting a style style_name = st.selectbox("Select a Style", options=list(styles_dict.keys())) # Display the selected style's prompt and negative prompt if style_name: selected_entry = styles_dict[style_name] selected_style_prompt = selected_entry["prompt"]; selected_style_negative_prompt = selected_entry["negative_prompt"] if st.button("Generate Awesome Image"): with st.spinner("Generating your awesome image..."): image =image_generation(pipeline,prompt + selected_style_prompt, selected_style_negative_prompt) if image: st.image(image)