############################################################################################################################# # Filename : app.py # Description: A Streamlit application to generate recipes, given an image of a food and an image of ingredients. # Author : Georgios Ioannou # # Copyright © 2024 by Georgios Ioannou ############################################################################################################################# # Import libraries. import openai # gpt-3.5-turbo model inference. import os # Load environment variable(s). import requests # Send HTTP GET request to Hugging Face models for inference. import streamlit as st # Build the GUI of the application. import torch # Load Salesforce/blip model(s) on GPU. from langchain.chat_models import ChatOpenAI # Access to OpenAI gpt-3.5-turbo model. from langchain.chains import LLMChain # Chain to run queries against LLMs. # A prompt template. It accepts a set of parameters from the user that can be used to generate a prompt for a language model. from langchain.prompts import PromptTemplate from PIL import Image # Open and identify a given image file. from transformers import BlipProcessor, BlipForQuestionAnswering # VQA model inference. ############################################################################################################################# # Load environment variable(s). HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") openai.api_key = os.getenv("OPENAI_API_KEY") ############################################################################################################################# # Function to apply local CSS. def local_css(file_name): with open(file_name) as f: st.markdown(f"", unsafe_allow_html=True) ############################################################################################################################# # Load the Visual Question Answering (VQA) model directly. # Using transformers. @st.cache_resource def load_model(): blip_processor_base = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") blip_model_base = BlipForQuestionAnswering.from_pretrained( "Salesforce/blip-vqa-base" ) # Backup model. # blip_processor_large = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large") # blip_model_large = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large") # return blip_processor_large, blip_model_large return blip_processor_base, blip_model_base ############################################################################################################################# # General function for any Salesforce/blip model(s). # VQA model. def generate_answer_blip(processor, model, image, question): # Prepare image + question. inputs = processor(images=image, text=question, return_tensors="pt") generated_ids = model.generate(**inputs, max_length=50) generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True) return generated_answer ############################################################################################################################# # Generate answer from the Salesforce/blip model(s). # VQA model. @st.cache_resource def generate_answer(image, question): answer_blip_base = generate_answer_blip( processor=blip_processor_base, model=blip_model_base, image=image, question=question, ) # answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question) # return answer_blip_large return answer_blip_base ############################################################################################################################# # Detect ingredients on an image. # Object detection model. @st.cache_resource def generate_ingredients(image): API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50" headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"} with open(image, "rb") as img: data = img.read() response = requests.post(url=API_URL, data=data, headers=headers) ingredients = response.json() return ingredients ############################################################################################################################# # Return the recipe generated by the model for the food and ingredients detected by the previous models. # Using Langchain. @st.cache_resource def generate_recipe(food, ingredients, chef): # Model used here: "gpt-3.5-turbo". # The template can be customized to meet one's needs such as: # Generate a recipe, generate a scenario, and generate lyrics of a song. template = """ You are a chef. You must sound like {chef}. You must make use of these ingredients: {ingredients}. Generate a detailed recipe step by step based on the above constraints for this food: {food}. """ prompt = PromptTemplate( template=template, input_variables=["food", "ingredients", "chef"] ) recipe_llm = LLMChain( llm=ChatOpenAI( model_name="gpt-3.5-turbo", temperature=0 ), # Increasing the temperature, the model becomes more creative and takes longer for inference. prompt=prompt, verbose=True, # Print intermediate values to the console. ) recipe = recipe_llm.predict( food=food, ingredients=ingredients, chef=chef ) # Format prompt with kwargs and pass to LLM. return recipe ############################################################################################################################# # Return the speech generated by the model for the recipe. # Using inference api. def generate_speech(response): # Model used here: "facebook/mms-tts-eng". # Backup model: "espnet/kan-bayashi_ljspeech_vits. # API_URL = ( # "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" # ) API_URL = "https://api-inference.huggingface.co/models/facebook/mms-tts-eng" headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"} payload = {"inputs": response} response = requests.post(url=API_URL, headers=headers, json=payload) with open("audio.flac", "wb") as file: file.write(response.content) ############################################################################################################################# # Conversation with OpenAI gpt-3.5-turbo model. def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0): response = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature, # This is the degree of randomness of the model's output. ) # print(str(response.choices[0].message)) return response.choices[0].message["content"] ############################################################################################################################# # Page title and favicon. st.set_page_config(page_title="ChefBot | Recipe Generator/Assistant", page_icon="🍴") ############################################################################################################################# # Load the Salesforce/blip model directly. if torch.cuda.is_available(): device = torch.device("cuda") # elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): # device = torch.device("mps") else: device = torch.device("cpu") blip_processor_base, blip_model_base = load_model() blip_model_base.to(device) ############################################################################################################################# # Define the chefs for the dropdown menu. chefs = [ "Gordon Ramsay", "Donald Trump", "Cardi B", ] ############################################################################################################################# # Main function to create the Streamlit web application. def main(): try: ##################################################################################################################### # Load CSS. local_css("styles/style.css") ##################################################################################################################### # Title. title = f"""

ChefBot - Recipe Generator/Assistant

""" st.markdown(title, unsafe_allow_html=True) # st.title("ChefBot - Automated Recipe Assistant") ##################################################################################################################### # Subtitle. subtitle = f"""

CUNY Tech Prep Tutorial 2

""" st.markdown(subtitle, unsafe_allow_html=True) ##################################################################################################################### # Image. image = "./ctp.png" left_co, cent_co, last_co = st.columns(3) with cent_co: st.image(image=image) ##################################################################################################################### # Heading 1. heading1 = f"""

Food

""" st.markdown(heading1, unsafe_allow_html=True) ##################################################################################################################### # Upload an image. uploaded_file_food = st.file_uploader( label="Choose an image:", key="food", help="An image of the food that you want a recipe for.", ) ##################################################################################################################### if uploaded_file_food is not None: # Display the uploaded image. bytes_data = uploaded_file_food.getvalue() with open(uploaded_file_food.name, "wb") as file: file.write(bytes_data) st.image( uploaded_file_food, caption="Uploaded Image.", use_column_width=True ) raw_image = Image.open(uploaded_file_food.name).convert("RGB") ################################################################################################################# # VQA model inference. with st.spinner( text="Detecting food..." ): # Spinner to keep the application interactive. # Model inference. answer = generate_answer(raw_image, "Is there a food in the picture?")[ 0 ] if answer == "yes": st.success(f"Food detected? {answer}", icon="❓") question = "What is the food in the picture?" food = generate_answer(image=raw_image, question=question)[0] st.success(f"Food detected: {food}", icon="✅") ################################################################################################################# # Heading 2. heading2 = f"""

Ingredients

""" st.markdown(heading2, unsafe_allow_html=True) ################################################################################################################# # Upload an image. uploaded_file_ingredients = st.file_uploader( label="Choose an image:", key="ingredients", help="An image of the ingredients that you want to use.", ) ################################################################################################################# if uploaded_file_ingredients is not None: # Display the uploaded image. bytes_data = uploaded_file_ingredients.getvalue() with open(uploaded_file_ingredients.name, "wb") as file: file.write(bytes_data) st.image( uploaded_file_ingredients, caption="Uploaded Image.", use_column_width=True, ) ############################################################################################################# # Object detection model inference. with st.spinner( text="Detecting Ingredients..." ): # Spinner to keep the application interactive. # Model inference. ingredients_list = generate_ingredients( image=uploaded_file_ingredients.name ) ############################################################################################################# # Display/Output the ingredients detected. ingredients = [] st.success(f"Ingredients:", icon="📝") for i, ingredient_dict in enumerate(ingredients_list): ingredients.append(ingredient_dict["label"]) st.write(i + 1, ingredient_dict["label"]) ############################################################################################################# # Heading 3. heading3 = f"""

ChefBot

""" st.markdown(heading3, unsafe_allow_html=True) ############################################################################################################# # Dropdown menu. chef = st.selectbox( label="Select your chef:", options=chefs, help="Select your chef.", ) ############################################################################################################# # Generate Recipe button col1, col2, col3 = st.columns(3) with col2: button_recipe = st.button("Generate Recipe") ############################################################################################################# if button_recipe: ######################################################################################################### # Langchain + OpenAI gpt-3.5-turbo model inference. with st.spinner( text="Generating Recipe..." ): # Spinner to keep the application interactive. # Model inference. recipe = generate_recipe( food=food, ingredients=ingredients, chef=chef ) ######################################################################################################### # Storing the recipe in session storage for future runs. st.session_state["recipe"] = recipe ######################################################################################################### # Text to speech model inference. with st.spinner( text="Generating Audio..." ): # Spinner to keep the application interactive. # Model inference. generate_speech(response=recipe) ######################################################################################################### # Display/Output the generated recipe in text and audio. with st.expander(label="Recipe"): st.write(recipe) st.audio("audio.flac") ######################################################################################################### # st.write(st.session_state) ############################################################################################################# # Conversation with ChefBot. if "recipe" in st.session_state: ######################################################################################################### # Context for the ChefBot. Context is use to accumulate messages. context = [ { "role": "system", "content": f""" You are a ChefBot, an automated service to guide users on how to cook step by step. You must sound like {chef}. You must first greet the user. You must help the user step by step with this recipe: {st.session_state['recipe']}. After you have given all of the steps of the recipe, you must thank the user and ask for user feedback both on the recipe and on your personality. Do NOT repeat the steps of any recipe during the conversation with the user.""", } ] ######################################################################################################### # User input. user_input = st.text_input( label="User Input:", key="user_input", help="Follow up with the chef for any questions on the recipe.", placeholder="Clarify step 1.", ) ######################################################################################################### # Chat and Reset Chat buttons. col1, col2, col3, col4, col5 = st.columns(5) with col1: button_chat = st.button("Chat") with col5: if st.button("Reset Chat"): st.session_state.panels = [] user_input = False ######################################################################################################### # Reverse the structure/way of displaying messages. if "panels" not in st.session_state: st.session_state.panels = [] ######################################################################################################### # If there is a user input or the chat button was clicked AND the input is not empty. if (user_input or button_chat) and user_input != "": # Context management. prompt = user_input context.append({"role": "user", "content": f"{prompt}"}) # OpenAI gpt-3.5-turbo model inference. with st.spinner(text="Generating Response..."): response = get_completion_from_messages(context) # Text to speech model inference. with st.spinner(text="Generating Audio..."): generate_speech(response=response) # Context management. context.append({"role": "assistant", "content": f"{response}"}) # Appending the newly generated messages into the structure/way of displaying messages. st.session_state.panels.append(("User:", prompt)) st.session_state.panels.append(("Assistant:", response)) ######################################################################################################### # Display/Output messages. with st.expander("Conversation History", expanded=True): for role, content in reversed(st.session_state.panels): # User. if role == "User:": user = f"""

👤{role} {content}

""" st.markdown(user, unsafe_allow_html=True) # ChefBot. else: st.audio("audio.flac") assistant = f"""

👨‍🍳{chef}: {content}

""" st.markdown(assistant, unsafe_allow_html=True) ############################################################################################################# except Exception as e: # General exception/error handling. st.error(e) # GitHub repository of author. st.markdown( f"""

Check out our GitHub repository

""", unsafe_allow_html=True, ) ############################################################################################################################# if __name__ == "__main__": main()