gokaygokay commited on
Commit
ade70cf
1 Parent(s): 2bbbd6c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -0
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoProcessor
3
+ from PIL import Image, ImageDraw
4
+ import requests
5
+ import matplotlib.pyplot as plt
6
+ import matplotlib.patches as patches
7
+ import numpy as np
8
+ import random
9
+
10
+ # Load model and processor
11
+ model_id = 'microsoft/Florence-2-large'
12
+ model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval()
13
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
14
+
15
+ def run_example(task_prompt, image, text_input=None):
16
+ prompt = task_prompt if text_input is None else task_prompt + text_input
17
+ inputs = processor(text=prompt, images=image, return_tensors="pt")
18
+ generated_ids = model.generate(
19
+ input_ids=inputs["input_ids"],
20
+ pixel_values=inputs["pixel_values"],
21
+ max_new_tokens=1024,
22
+ early_stopping=False,
23
+ do_sample=False,
24
+ num_beams=3,
25
+ )
26
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
27
+ parsed_answer = processor.post_process_generation(
28
+ generated_text,
29
+ task=task_prompt,
30
+ image_size=(image.width, image.height)
31
+ )
32
+ return parsed_answer
33
+
34
+ def plot_bbox(image, data):
35
+ fig, ax = plt.subplots()
36
+ ax.imshow(image)
37
+ for bbox, label in zip(data['bboxes'], data['labels']):
38
+ x1, y1, x2, y2 = bbox
39
+ rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
40
+ ax.add_patch(rect)
41
+ plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
42
+ plt.axis('off')
43
+ plt.show()
44
+
45
+ def draw_polygons(image, prediction, fill_mask=False):
46
+ draw = ImageDraw.Draw(image)
47
+ colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red']
48
+ for polygons, label in zip(prediction['polygons'], prediction['labels']):
49
+ color = random.choice(colormap)
50
+ fill_color = color if fill_mask else None
51
+ for polygon in polygons:
52
+ draw.polygon(polygon, outline=color, fill=fill_color)
53
+ draw.text((polygon[0][0], polygon[0][1]), label, fill=color)
54
+ image.show()
55
+
56
+ def gradio_interface(image, task_prompt, text_input):
57
+ result = run_example(task_prompt, image, text_input)
58
+ if task_prompt in ['<OD>', '<OPEN_VOCABULARY_DETECTION>']:
59
+ plot_bbox(image, result)
60
+ elif task_prompt in ['<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>']:
61
+ draw_polygons(image, result, fill_mask=True)
62
+ return result
63
+
64
+ with gr.Blocks() as demo:
65
+ gr.Markdown("## Florence Model Advanced Tasks")
66
+ with gr.Row():
67
+ image_input = gr.Image(type="pil")
68
+ task_input = gr.Dropdown(label="Select Task", choices=[
69
+ '<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>',
70
+ '<OD>', '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>',
71
+ '<CAPTION_TO_PHRASE_GROUNDING>', '<REFERRING_EXPRESSION_SEGMENTATION>',
72
+ '<REGION_TO_SEGMENTATION>', '<OPEN_VOCABULARY_DETECTION>',
73
+ '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>', '<OCR>', '<OCR_WITH_REGION>'
74
+ ])
75
+ text_input = gr.Textbox(label="Optional Text Input", placeholder="Enter text here if required by the task")
76
+ submit_btn = gr.Button("Run Task")
77
+ output = gr.Textbox(label="Output")
78
+
79
+ submit_btn.click(fn=gradio_interface, inputs=[image_input, task_input, text_input], outputs=output)
80
+
81
+ demo.launch()