Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import argparse | |
import torch | |
from torch.utils.data import DataLoader | |
from transformers import EsmForMaskedLM, AutoModel, EsmTokenizer | |
from utils.drug_tokenizer import DrugTokenizer | |
from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI | |
from bertviz import head_view | |
import tempfile | |
from flask import Flask, request, render_template_string | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
sys.path.append("../") | |
app = Flask(__name__) | |
def parse_config(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-f') | |
parser.add_argument("--prot_encoder_path", type=str, default="westlake-repl/SaProt_650M_AF2", help="path/name of protein encoder model located") | |
parser.add_argument("--drug_encoder_path", type=str, default="HUBioDataLab/SELFormer", help="path/name of SMILE pre-trained language model") | |
parser.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}") | |
parser.add_argument("--fusion", default="CAN", type=str, help="{CAN|BAN}") | |
parser.add_argument("--batch_size", type=int, default=64) | |
parser.add_argument("--group_size", type=int, default=1) | |
parser.add_argument("--lr", type=float, default=1e-4) | |
parser.add_argument("--dropout", type=float, default=0.1) | |
parser.add_argument("--test", type=int, default=0) | |
parser.add_argument("--use_pooled", action="store_true", default=True) | |
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu") | |
parser.add_argument("--save_path_prefix", type=str, default="save_model_ckp/", help="save the result in which directory") | |
parser.add_argument("--save_name", default="fine_tune", type=str, help="the name of the saved file") | |
parser.add_argument("--dataset", type=str, default="Human", help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')") | |
return parser.parse_args() | |
args = parse_config() | |
device = args.device | |
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path) | |
drug_tokenizer = DrugTokenizer() | |
prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path) | |
drug_model = AutoModel.from_pretrained(args.drug_encoder_path) | |
encoding = Pre_encoded(prot_model, drug_model, args).to(device) | |
def get_case_feature(model, dataloader, device): | |
with torch.no_grad(): | |
for step, batch in enumerate(dataloader): | |
prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask, label = batch | |
prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask = \ | |
prot_input_ids.to(device), prot_attention_mask.to(device), drug_input_ids.to(device), drug_attention_mask.to(device) | |
prot_embed, drug_embed = model.encoding(prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask) | |
prot_embed, drug_embed = prot_embed.cpu(), drug_embed.cpu() | |
prot_input_ids, drug_input_ids = prot_input_ids.cpu(), drug_input_ids.cpu() | |
prot_attention_mask, drug_attention_mask = prot_attention_mask.cpu(), drug_attention_mask.cpu() | |
label = label.cpu() | |
return [(prot_embed, drug_embed, prot_input_ids, drug_input_ids, prot_attention_mask, drug_attention_mask, label)] | |
def visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer): | |
model.eval() | |
with torch.no_grad(): | |
for batch in case_features: | |
prot, drug, prot_ids, drug_ids, prot_mask, drug_mask, label = batch | |
prot, drug = prot.to(device), drug.to(device) | |
prot_mask, drug_mask = prot_mask.to(device), drug_mask.to(device) | |
output, attention_weights = model(prot, drug, prot_mask, drug_mask) | |
prot_tokens = [prot_tokenizer.decode([pid.item()], skip_special_tokens=True) for pid in prot_ids.squeeze()] | |
drug_tokens = [drug_tokenizer.decode([did.item()], skip_special_tokens=True) for did in drug_ids.squeeze()] | |
tokens = prot_tokens + drug_tokens | |
attention_weights = attention_weights.unsqueeze(1) | |
# Generate HTML content using head_view with html_action='return' | |
html_head_view = head_view(attention_weights, tokens, sentence_b_start=512, html_action='return') | |
# Parse the HTML and modify it to replace sentence labels | |
html_content = html_head_view.data | |
html_content = html_content.replace("Sentence A -> Sentence A", "Protein -> Protein") | |
html_content = html_content.replace("Sentence B -> Sentence B", "Drug -> Drug") | |
html_content = html_content.replace("Sentence A -> Sentence B", "Protein -> Drug") | |
html_content = html_content.replace("Sentence B -> Sentence A", "Drug -> Protein") | |
# Save the modified HTML content to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f: | |
f.write(html_content.encode('utf-8')) | |
temp_file_path = f.name | |
return temp_file_path | |
def index(): | |
protein_sequence = "" | |
drug_sequence = "" | |
result = None | |
if request.method == 'POST': | |
if 'clear' in request.form: | |
protein_sequence = "" | |
drug_sequence = "" | |
else: | |
protein_sequence = request.form['protein_sequence'] | |
drug_sequence = request.form['drug_sequence'] | |
dataset = [(protein_sequence, drug_sequence, 1)] | |
dataloader = DataLoader(dataset, batch_size=1, collate_fn=collate_fn_batch_encoding) | |
case_features = get_case_feature(encoding, dataloader, device) | |
model = FusionDTI(446, 768, args).to(device) | |
best_model_dir = f"{args.save_path_prefix}{args.dataset}_{args.fusion}" | |
checkpoint_path = os.path.join(best_model_dir, 'best_model.ckpt') | |
if os.path.exists(checkpoint_path): | |
model.load_state_dict(torch.load(checkpoint_path, map_location=device)) | |
html_file_path = visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer) | |
with open(html_file_path, 'r') as f: | |
result = f.read() | |
return render_template_string(''' | |
<html> | |
<head> | |
<title>Drug Target Interaction Visualization</title> | |
<style> | |
body { font-family: 'Times New Roman', Times, serif; margin: 40px; } | |
h2 { color: #333; } | |
.container { display: flex; } | |
.left { flex: 1; padding-right: 20px; } | |
.right { flex: 1; } | |
textarea { | |
width: 100%; | |
padding: 12px 20px; | |
margin: 8px 0; | |
display: inline-block; | |
border: 1px solid #ccc; | |
border-radius: 4px; | |
box-sizing: border-box; | |
font-size: 16px; | |
font-family: 'Times New Roman', Times, serif; | |
} | |
.button-container { | |
display: flex; | |
justify-content: space-between; | |
} | |
input[type="submit"], .button { | |
width: 48%; | |
color: white; | |
padding: 14px 20px; | |
margin: 8px 0; | |
border: none; | |
border-radius: 4px; | |
cursor: pointer; | |
font-size: 16px; | |
font-family: 'Times New Roman', Times, serif; | |
} | |
.submit { | |
background-color: #FFA500; | |
} | |
.submit:hover { | |
background-color: #FF8C00; | |
} | |
.clear { | |
background-color: #D3D3D3; | |
} | |
.clear:hover { | |
background-color: #A9A9A9; | |
} | |
.result { | |
font-size: 18px; | |
} | |
</style> | |
</head> | |
<body> | |
<h2 style="text-align: center;">Drug Target Interaction Visualization</h2> | |
<div class="container"> | |
<div class="left"> | |
<form method="post"> | |
<label for="protein_sequence">Protein Sequence:</label> | |
<textarea id="protein_sequence" name="protein_sequence" rows="4" placeholder="Enter protein sequence here..." required>{{ protein_sequence }}</textarea><br> | |
<label for="drug_sequence">Drug Sequence:</label> | |
<textarea id="drug_sequence" name="drug_sequence" rows="4" placeholder="Enter drug sequence here..." required>{{ drug_sequence }}</textarea><br> | |
<div class="button-container"> | |
<input type="submit" name="submit" class="button submit" value="Submit"> | |
<input type="submit" name="clear" class="button clear" value="Clear"> | |
</div> | |
</form> | |
</div> | |
<div class="right" style="display: flex; justify-content: center; align-items: center;"> | |
{% if result %} | |
<div class="result"> | |
{{ result|safe }} | |
</div> | |
{% endif %} | |
</div> | |
</div> | |
</body> | |
</html> | |
''', protein_sequence=protein_sequence, drug_sequence=drug_sequence, result=result) | |
def collate_fn_batch_encoding(batch): | |
query1, query2, scores = zip(*batch) | |
query_encodings1 = prot_tokenizer.batch_encode_plus( | |
list(query1), | |
max_length=512, | |
padding="max_length", | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
query_encodings2 = drug_tokenizer.batch_encode_plus( | |
list(query2), | |
max_length=512, | |
padding="max_length", | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
scores = torch.tensor(list(scores)) | |
attention_mask1 = query_encodings1["attention_mask"].bool() | |
attention_mask2 = query_encodings2["attention_mask"].bool() | |
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores | |
if __name__ == '__main__': | |
app.run(debug=True, host="0.0.0.0", port=7860) |