FusionDTI / app.py
Gla-AI4BioMed-Lab's picture
Update app.py
fde18d9 verified
import os
import sys
import argparse
import torch
from torch.utils.data import DataLoader
from transformers import EsmForMaskedLM, AutoModel, EsmTokenizer
from utils.drug_tokenizer import DrugTokenizer
from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI
from bertviz import head_view
import tempfile
from flask import Flask, request, render_template_string
os.environ["TOKENIZERS_PARALLELISM"] = "false"
sys.path.append("../")
app = Flask(__name__)
def parse_config():
parser = argparse.ArgumentParser()
parser.add_argument('-f')
parser.add_argument("--prot_encoder_path", type=str, default="westlake-repl/SaProt_650M_AF2", help="path/name of protein encoder model located")
parser.add_argument("--drug_encoder_path", type=str, default="HUBioDataLab/SELFormer", help="path/name of SMILE pre-trained language model")
parser.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}")
parser.add_argument("--fusion", default="CAN", type=str, help="{CAN|BAN}")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--group_size", type=int, default=1)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--dropout", type=float, default=0.1)
parser.add_argument("--test", type=int, default=0)
parser.add_argument("--use_pooled", action="store_true", default=True)
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument("--save_path_prefix", type=str, default="save_model_ckp/", help="save the result in which directory")
parser.add_argument("--save_name", default="fine_tune", type=str, help="the name of the saved file")
parser.add_argument("--dataset", type=str, default="Human", help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')")
return parser.parse_args()
args = parse_config()
device = args.device
prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path)
drug_tokenizer = DrugTokenizer()
prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path)
drug_model = AutoModel.from_pretrained(args.drug_encoder_path)
encoding = Pre_encoded(prot_model, drug_model, args).to(device)
def get_case_feature(model, dataloader, device):
with torch.no_grad():
for step, batch in enumerate(dataloader):
prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask, label = batch
prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask = \
prot_input_ids.to(device), prot_attention_mask.to(device), drug_input_ids.to(device), drug_attention_mask.to(device)
prot_embed, drug_embed = model.encoding(prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask)
prot_embed, drug_embed = prot_embed.cpu(), drug_embed.cpu()
prot_input_ids, drug_input_ids = prot_input_ids.cpu(), drug_input_ids.cpu()
prot_attention_mask, drug_attention_mask = prot_attention_mask.cpu(), drug_attention_mask.cpu()
label = label.cpu()
return [(prot_embed, drug_embed, prot_input_ids, drug_input_ids, prot_attention_mask, drug_attention_mask, label)]
def visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer):
model.eval()
with torch.no_grad():
for batch in case_features:
prot, drug, prot_ids, drug_ids, prot_mask, drug_mask, label = batch
prot, drug = prot.to(device), drug.to(device)
prot_mask, drug_mask = prot_mask.to(device), drug_mask.to(device)
output, attention_weights = model(prot, drug, prot_mask, drug_mask)
prot_tokens = [prot_tokenizer.decode([pid.item()], skip_special_tokens=True) for pid in prot_ids.squeeze()]
drug_tokens = [drug_tokenizer.decode([did.item()], skip_special_tokens=True) for did in drug_ids.squeeze()]
tokens = prot_tokens + drug_tokens
attention_weights = attention_weights.unsqueeze(1)
# Generate HTML content using head_view with html_action='return'
html_head_view = head_view(attention_weights, tokens, sentence_b_start=512, html_action='return')
# Parse the HTML and modify it to replace sentence labels
html_content = html_head_view.data
html_content = html_content.replace("Sentence A -> Sentence A", "Protein -> Protein")
html_content = html_content.replace("Sentence B -> Sentence B", "Drug -> Drug")
html_content = html_content.replace("Sentence A -> Sentence B", "Protein -> Drug")
html_content = html_content.replace("Sentence B -> Sentence A", "Drug -> Protein")
# Save the modified HTML content to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f:
f.write(html_content.encode('utf-8'))
temp_file_path = f.name
return temp_file_path
@app.route('/', methods=['GET', 'POST'])
def index():
protein_sequence = ""
drug_sequence = ""
result = None
if request.method == 'POST':
if 'clear' in request.form:
protein_sequence = ""
drug_sequence = ""
else:
protein_sequence = request.form['protein_sequence']
drug_sequence = request.form['drug_sequence']
dataset = [(protein_sequence, drug_sequence, 1)]
dataloader = DataLoader(dataset, batch_size=1, collate_fn=collate_fn_batch_encoding)
case_features = get_case_feature(encoding, dataloader, device)
model = FusionDTI(446, 768, args).to(device)
best_model_dir = f"{args.save_path_prefix}{args.dataset}_{args.fusion}"
checkpoint_path = os.path.join(best_model_dir, 'best_model.ckpt')
if os.path.exists(checkpoint_path):
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
html_file_path = visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer)
with open(html_file_path, 'r') as f:
result = f.read()
return render_template_string('''
<html>
<head>
<title>Drug Target Interaction Visualization</title>
<style>
body { font-family: 'Times New Roman', Times, serif; margin: 40px; }
h2 { color: #333; }
.container { display: flex; }
.left { flex: 1; padding-right: 20px; }
.right { flex: 1; }
textarea {
width: 100%;
padding: 12px 20px;
margin: 8px 0;
display: inline-block;
border: 1px solid #ccc;
border-radius: 4px;
box-sizing: border-box;
font-size: 16px;
font-family: 'Times New Roman', Times, serif;
}
.button-container {
display: flex;
justify-content: space-between;
}
input[type="submit"], .button {
width: 48%;
color: white;
padding: 14px 20px;
margin: 8px 0;
border: none;
border-radius: 4px;
cursor: pointer;
font-size: 16px;
font-family: 'Times New Roman', Times, serif;
}
.submit {
background-color: #FFA500;
}
.submit:hover {
background-color: #FF8C00;
}
.clear {
background-color: #D3D3D3;
}
.clear:hover {
background-color: #A9A9A9;
}
.result {
font-size: 18px;
}
</style>
</head>
<body>
<h2 style="text-align: center;">Drug Target Interaction Visualization</h2>
<div class="container">
<div class="left">
<form method="post">
<label for="protein_sequence">Protein Sequence:</label>
<textarea id="protein_sequence" name="protein_sequence" rows="4" placeholder="Enter protein sequence here..." required>{{ protein_sequence }}</textarea><br>
<label for="drug_sequence">Drug Sequence:</label>
<textarea id="drug_sequence" name="drug_sequence" rows="4" placeholder="Enter drug sequence here..." required>{{ drug_sequence }}</textarea><br>
<div class="button-container">
<input type="submit" name="submit" class="button submit" value="Submit">
<input type="submit" name="clear" class="button clear" value="Clear">
</div>
</form>
</div>
<div class="right" style="display: flex; justify-content: center; align-items: center;">
{% if result %}
<div class="result">
{{ result|safe }}
</div>
{% endif %}
</div>
</div>
</body>
</html>
''', protein_sequence=protein_sequence, drug_sequence=drug_sequence, result=result)
def collate_fn_batch_encoding(batch):
query1, query2, scores = zip(*batch)
query_encodings1 = prot_tokenizer.batch_encode_plus(
list(query1),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
query_encodings2 = drug_tokenizer.batch_encode_plus(
list(query2),
max_length=512,
padding="max_length",
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
scores = torch.tensor(list(scores))
attention_mask1 = query_encodings1["attention_mask"].bool()
attention_mask2 = query_encodings2["attention_mask"].bool()
return query_encodings1["input_ids"], attention_mask1, query_encodings2["input_ids"], attention_mask2, scores
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0", port=7860)