import os import sys import argparse import torch from torch.utils.data import DataLoader from transformers import EsmForMaskedLM, AutoModel, EsmTokenizer from utils.drug_tokenizer import DrugTokenizer from utils.metric_learning_models_att_maps import Pre_encoded, FusionDTI from bertviz import head_view import tempfile from flask import Flask, request, render_template_string os.environ["TOKENIZERS_PARALLELISM"] = "false" sys.path.append("../") app = Flask(__name__) def parse_config(): parser = argparse.ArgumentParser() parser.add_argument('-f') parser.add_argument("--prot_encoder_path", type=str, default="westlake-repl/SaProt_650M_AF2", help="path/name of protein encoder model located") parser.add_argument("--drug_encoder_path", type=str, default="HUBioDataLab/SELFormer", help="path/name of SMILE pre-trained language model") parser.add_argument("--agg_mode", default="mean_all_tok", type=str, help="{cls|mean|mean_all_tok}") parser.add_argument("--fusion", default="CAN", type=str, help="{CAN|BAN}") parser.add_argument("--batch_size", type=int, default=64) parser.add_argument("--group_size", type=int, default=1) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--dropout", type=float, default=0.1) parser.add_argument("--test", type=int, default=0) parser.add_argument("--use_pooled", action="store_true", default=True) parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu") parser.add_argument("--save_path_prefix", type=str, default="save_model_ckp/", help="save the result in which directory") parser.add_argument("--save_name", default="fine_tune", type=str, help="the name of the saved file") parser.add_argument("--dataset", type=str, default="Human", help="Name of the dataset to use (e.g., 'BindingDB', 'Human', 'Biosnap')") return parser.parse_args() args = parse_config() device = args.device prot_tokenizer = EsmTokenizer.from_pretrained(args.prot_encoder_path) drug_tokenizer = DrugTokenizer() prot_model = EsmForMaskedLM.from_pretrained(args.prot_encoder_path) drug_model = AutoModel.from_pretrained(args.drug_encoder_path) encoding = Pre_encoded(prot_model, drug_model, args).to(device) def get_case_feature(model, dataloader, device): with torch.no_grad(): for step, batch in enumerate(dataloader): prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask, label = batch prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask = \ prot_input_ids.to(device), prot_attention_mask.to(device), drug_input_ids.to(device), drug_attention_mask.to(device) prot_embed, drug_embed = model.encoding(prot_input_ids, prot_attention_mask, drug_input_ids, drug_attention_mask) prot_embed, drug_embed = prot_embed.cpu(), drug_embed.cpu() prot_input_ids, drug_input_ids = prot_input_ids.cpu(), drug_input_ids.cpu() prot_attention_mask, drug_attention_mask = prot_attention_mask.cpu(), drug_attention_mask.cpu() label = label.cpu() return [(prot_embed, drug_embed, prot_input_ids, drug_input_ids, prot_attention_mask, drug_attention_mask, label)] def visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer): model.eval() with torch.no_grad(): for batch in case_features: prot, drug, prot_ids, drug_ids, prot_mask, drug_mask, label = batch prot, drug = prot.to(device), drug.to(device) prot_mask, drug_mask = prot_mask.to(device), drug_mask.to(device) output, attention_weights = model(prot, drug, prot_mask, drug_mask) prot_tokens = [prot_tokenizer.decode([pid.item()], skip_special_tokens=True) for pid in prot_ids.squeeze()] drug_tokens = [drug_tokenizer.decode([did.item()], skip_special_tokens=True) for did in drug_ids.squeeze()] tokens = prot_tokens + drug_tokens attention_weights = attention_weights.unsqueeze(1) # Generate HTML content using head_view with html_action='return' html_head_view = head_view(attention_weights, tokens, sentence_b_start=512, html_action='return') # Parse the HTML and modify it to replace sentence labels html_content = html_head_view.data html_content = html_content.replace("Sentence A -> Sentence A", "Protein -> Protein") html_content = html_content.replace("Sentence B -> Sentence B", "Drug -> Drug") html_content = html_content.replace("Sentence A -> Sentence B", "Protein -> Drug") html_content = html_content.replace("Sentence B -> Sentence A", "Drug -> Protein") # Save the modified HTML content to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as f: f.write(html_content.encode('utf-8')) temp_file_path = f.name return temp_file_path @app.route('/', methods=['GET', 'POST']) def index(): protein_sequence = "" drug_sequence = "" result = None if request.method == 'POST': if 'clear' in request.form: protein_sequence = "" drug_sequence = "" else: protein_sequence = request.form['protein_sequence'] drug_sequence = request.form['drug_sequence'] dataset = [(protein_sequence, drug_sequence, 1)] dataloader = DataLoader(dataset, batch_size=1, collate_fn=collate_fn_batch_encoding) case_features = get_case_feature(encoding, dataloader, device) model = FusionDTI(446, 768, args).to(device) best_model_dir = f"{args.save_path_prefix}{args.dataset}_{args.fusion}" checkpoint_path = os.path.join(best_model_dir, 'best_model.ckpt') if os.path.exists(checkpoint_path): model.load_state_dict(torch.load(checkpoint_path, map_location=device)) html_file_path = visualize_attention(model, case_features, device, prot_tokenizer, drug_tokenizer) with open(html_file_path, 'r') as f: result = f.read() return render_template_string('''