Gladiator commited on
Commit
e36f01a
β€’
1 Parent(s): 860e3b3

try reducing run time

Browse files
Files changed (1) hide show
  1. app.py +17 -9
app.py CHANGED
@@ -3,11 +3,7 @@ import streamlit as st
3
  from extractive_summarizer.model_processors import Summarizer
4
  from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
5
 
6
- def abstractive_summarizer(text : str):
7
-
8
- model = T5ForConditionalGeneration.from_pretrained('t5-large')
9
- tokenizer = T5Tokenizer.from_pretrained('t5-large')
10
- device = torch.device('cpu')
11
 
12
  preprocess_text = text.strip().replace("\n", "")
13
  t5_prepared_text = "summarize: " + preprocess_text
@@ -25,7 +21,20 @@ def abstractive_summarizer(text : str):
25
  return abs_summarized_text
26
 
27
  if __name__ == "__main__":
 
 
 
 
 
 
28
 
 
 
 
 
 
 
 
29
  st.title("Text Summarizer πŸ“")
30
  summarize_type = st.sidebar.selectbox("Summarization type", options=["Extractive", "Abstractive"])
31
 
@@ -41,12 +50,11 @@ if __name__ == "__main__":
41
  if summarize:
42
  if summarize_type == "Extractive":
43
  # extractive summarizer
44
- # init model
45
- model = Summarizer()
46
- summarized_text = model(inp_text, num_sentences=5)
47
 
48
  elif summarize_type == "Abstractive":
49
- summarized_text = abstractive_summarizer(inp_text)
50
 
51
  # final summarized output
52
  st.subheader("Summarized text")
 
3
  from extractive_summarizer.model_processors import Summarizer
4
  from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
5
 
6
+ def abstractive_summarizer(text : str, model):
 
 
 
 
7
 
8
  preprocess_text = text.strip().replace("\n", "")
9
  t5_prepared_text = "summarize: " + preprocess_text
 
21
  return abs_summarized_text
22
 
23
  if __name__ == "__main__":
24
+ # ---------------------
25
+ # download models
26
+ # ---------------------
27
+ abs_model = T5ForConditionalGeneration.from_pretrained('t5-large')
28
+ tokenizer = T5Tokenizer.from_pretrained('t5-large')
29
+ device = torch.device('cpu')
30
 
31
+ # init extractive summarizer (bad practice, fix later)
32
+ # init model
33
+ ext_model = Summarizer()
34
+
35
+ # ---------------------------------
36
+ # Main Application
37
+ # ---------------------------------
38
  st.title("Text Summarizer πŸ“")
39
  summarize_type = st.sidebar.selectbox("Summarization type", options=["Extractive", "Abstractive"])
40
 
 
50
  if summarize:
51
  if summarize_type == "Extractive":
52
  # extractive summarizer
53
+
54
+ summarized_text = ext_model(inp_text, num_sentences=5)
 
55
 
56
  elif summarize_type == "Abstractive":
57
+ summarized_text = abstractive_summarizer(inp_text, model=abs_model)
58
 
59
  # final summarized output
60
  st.subheader("Summarized text")