Spaces:
Runtime error
Runtime error
try reducing run time
Browse files
app.py
CHANGED
@@ -3,11 +3,7 @@ import streamlit as st
|
|
3 |
from extractive_summarizer.model_processors import Summarizer
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
|
5 |
|
6 |
-
def abstractive_summarizer(text : str):
|
7 |
-
|
8 |
-
model = T5ForConditionalGeneration.from_pretrained('t5-large')
|
9 |
-
tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
10 |
-
device = torch.device('cpu')
|
11 |
|
12 |
preprocess_text = text.strip().replace("\n", "")
|
13 |
t5_prepared_text = "summarize: " + preprocess_text
|
@@ -25,7 +21,20 @@ def abstractive_summarizer(text : str):
|
|
25 |
return abs_summarized_text
|
26 |
|
27 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
st.title("Text Summarizer π")
|
30 |
summarize_type = st.sidebar.selectbox("Summarization type", options=["Extractive", "Abstractive"])
|
31 |
|
@@ -41,12 +50,11 @@ if __name__ == "__main__":
|
|
41 |
if summarize:
|
42 |
if summarize_type == "Extractive":
|
43 |
# extractive summarizer
|
44 |
-
|
45 |
-
|
46 |
-
summarized_text = model(inp_text, num_sentences=5)
|
47 |
|
48 |
elif summarize_type == "Abstractive":
|
49 |
-
summarized_text = abstractive_summarizer(inp_text)
|
50 |
|
51 |
# final summarized output
|
52 |
st.subheader("Summarized text")
|
|
|
3 |
from extractive_summarizer.model_processors import Summarizer
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
|
5 |
|
6 |
+
def abstractive_summarizer(text : str, model):
|
|
|
|
|
|
|
|
|
7 |
|
8 |
preprocess_text = text.strip().replace("\n", "")
|
9 |
t5_prepared_text = "summarize: " + preprocess_text
|
|
|
21 |
return abs_summarized_text
|
22 |
|
23 |
if __name__ == "__main__":
|
24 |
+
# ---------------------
|
25 |
+
# download models
|
26 |
+
# ---------------------
|
27 |
+
abs_model = T5ForConditionalGeneration.from_pretrained('t5-large')
|
28 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
29 |
+
device = torch.device('cpu')
|
30 |
|
31 |
+
# init extractive summarizer (bad practice, fix later)
|
32 |
+
# init model
|
33 |
+
ext_model = Summarizer()
|
34 |
+
|
35 |
+
# ---------------------------------
|
36 |
+
# Main Application
|
37 |
+
# ---------------------------------
|
38 |
st.title("Text Summarizer π")
|
39 |
summarize_type = st.sidebar.selectbox("Summarization type", options=["Extractive", "Abstractive"])
|
40 |
|
|
|
50 |
if summarize:
|
51 |
if summarize_type == "Extractive":
|
52 |
# extractive summarizer
|
53 |
+
|
54 |
+
summarized_text = ext_model(inp_text, num_sentences=5)
|
|
|
55 |
|
56 |
elif summarize_type == "Abstractive":
|
57 |
+
summarized_text = abstractive_summarizer(inp_text, model=abs_model)
|
58 |
|
59 |
# final summarized output
|
60 |
st.subheader("Summarized text")
|