Spaces:
Runtime error
Runtime error
rollback
Browse files
app.py
CHANGED
@@ -3,14 +3,16 @@ import streamlit as st
|
|
3 |
from extractive_summarizer.model_processors import Summarizer
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
|
5 |
|
6 |
-
def abstractive_summarizer(text : str
|
7 |
-
|
|
|
|
|
8 |
preprocess_text = text.strip().replace("\n", "")
|
9 |
t5_prepared_text = "summarize: " + preprocess_text
|
10 |
tokenized_text = tokenizer.encode(t5_prepared_text, return_tensors="pt").to("cpu")
|
11 |
|
12 |
# summmarize
|
13 |
-
summary_ids =
|
14 |
num_beams=4,
|
15 |
no_repeat_ngram_size=2,
|
16 |
min_length=30,
|
@@ -21,17 +23,6 @@ def abstractive_summarizer(text : str, model):
|
|
21 |
return abs_summarized_text
|
22 |
|
23 |
if __name__ == "__main__":
|
24 |
-
# ---------------------
|
25 |
-
# download models
|
26 |
-
# ---------------------
|
27 |
-
abs_model = T5ForConditionalGeneration.from_pretrained('t5-large')
|
28 |
-
tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
29 |
-
device = torch.device('cpu')
|
30 |
-
|
31 |
-
# init extractive summarizer (bad practice, fix later)
|
32 |
-
# init model
|
33 |
-
ext_model = Summarizer()
|
34 |
-
|
35 |
# ---------------------------------
|
36 |
# Main Application
|
37 |
# ---------------------------------
|
@@ -51,10 +42,12 @@ if __name__ == "__main__":
|
|
51 |
if summarize_type == "Extractive":
|
52 |
# extractive summarizer
|
53 |
|
|
|
54 |
summarized_text = ext_model(inp_text, num_sentences=5)
|
55 |
|
56 |
elif summarize_type == "Abstractive":
|
57 |
-
|
|
|
58 |
|
59 |
# final summarized output
|
60 |
st.subheader("Summarized text")
|
|
|
3 |
from extractive_summarizer.model_processors import Summarizer
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
|
5 |
|
6 |
+
def abstractive_summarizer(text : str):
|
7 |
+
abs_model = T5ForConditionalGeneration.from_pretrained('t5-large')
|
8 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
9 |
+
device = torch.device('cpu')
|
10 |
preprocess_text = text.strip().replace("\n", "")
|
11 |
t5_prepared_text = "summarize: " + preprocess_text
|
12 |
tokenized_text = tokenizer.encode(t5_prepared_text, return_tensors="pt").to("cpu")
|
13 |
|
14 |
# summmarize
|
15 |
+
summary_ids = abs_model.generate(tokenized_text,
|
16 |
num_beams=4,
|
17 |
no_repeat_ngram_size=2,
|
18 |
min_length=30,
|
|
|
23 |
return abs_summarized_text
|
24 |
|
25 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# ---------------------------------
|
27 |
# Main Application
|
28 |
# ---------------------------------
|
|
|
42 |
if summarize_type == "Extractive":
|
43 |
# extractive summarizer
|
44 |
|
45 |
+
ext_model = Summarizer()
|
46 |
summarized_text = ext_model(inp_text, num_sentences=5)
|
47 |
|
48 |
elif summarize_type == "Abstractive":
|
49 |
+
|
50 |
+
summarized_text = abstractive_summarizer(inp_text)
|
51 |
|
52 |
# final summarized output
|
53 |
st.subheader("Summarized text")
|