import streamlit as st import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error # Load and prepare the dataset url = "https://raw.githubusercontent.com/manishkr1754/CarDekho_Used_Car_Price_Prediction/main/notebooks/data/cardekho_dataset.csv" df = pd.read_csv(url) # Data preparation df = df.drop(columns=['Unnamed: 0']) # Drop irrelevant column X = df.drop(columns=['selling_price']) y = df['selling_price'] # Define feature types num_features = ['vehicle_age', 'km_driven', 'mileage', 'engine', 'max_power', 'seats'] cat_features = ['car_name', 'brand', 'model', 'seller_type', 'fuel_type', 'transmission_type'] # Preprocessing pipeline numeric_transformer = StandardScaler() onehot_transformer = OneHotEncoder(handle_unknown='ignore') preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, num_features), ('cat', onehot_transformer, cat_features) ]) # Combine preprocessing with model model = Pipeline(steps=[ ('preprocessor', preprocessor), ('regressor', RandomForestRegressor(n_estimators=100, random_state=42)) ]) # Split the data and train the model X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model.fit(X_train, y_train) # Evaluate the model (optional, you can remove this if not needed) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) # Streamlit app st.title('Used Car Price Prediction') # Input fields st.sidebar.header('Enter Car Details') year = st.sidebar.number_input('Year of Manufacture', min_value=1990, max_value=2023, value=2015) km_driven = st.sidebar.number_input('Kilometers Driven', min_value=0, max_value=300000, value=50000) vehicle_age = st.sidebar.number_input('Vehicle Age (years)', min_value=0, max_value=30, value=5) mileage = st.sidebar.number_input('Mileage (km/l)', min_value=0.0, max_value=50.0, value=15.0) engine = st.sidebar.number_input('Engine Capacity (cc)', min_value=0, max_value=5000, value=1500) max_power = st.sidebar.number_input('Maximum Power (bhp)', min_value=0, max_value=500, value=100) seats = st.sidebar.number_input('Number of Seats', min_value=2, max_value=7, value=5) seller_type = st.sidebar.selectbox('Seller Type', ['Dealer', 'Individual']) transmission_type = st.sidebar.selectbox('Transmission Type', ['Manual', 'Automatic']) fuel_type = st.sidebar.selectbox('Fuel Type', ['Petrol', 'Diesel', 'CNG', 'LPG']) car_name = st.sidebar.text_input('Car Name') brand = st.sidebar.text_input('Brand') model_name = st.sidebar.text_input('Model') # Button to trigger the prediction if st.sidebar.button('Predict Price'): # Create input dataframe input_data = pd.DataFrame({ 'vehicle_age': [vehicle_age], 'km_driven': [km_driven], 'mileage': [mileage], 'engine': [engine], 'max_power': [max_power], 'seats': [seats], 'car_name': [car_name], 'brand': [brand], 'model': [model_name], 'seller_type': [seller_type], 'fuel_type': [fuel_type], 'transmission_type': [transmission_type] }) # Predict the price predicted_price = model.predict(input_data) st.write(f'The predicted selling price for the car is: ₹ {predicted_price[0]:,.2f}')