File size: 13,339 Bytes
9cefce7
beb9e09
9cefce7
 
 
 
 
 
 
 
 
beb9e09
9cefce7
beb9e09
9cefce7
beb9e09
9cefce7
 
 
 
 
 
 
 
beb9e09
 
9cefce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb9e09
9cefce7
 
beb9e09
 
9cefce7
beb9e09
 
9cefce7
 
beb9e09
 
9cefce7
 
beb9e09
9cefce7
 
beb9e09
9cefce7
 
 
 
 
 
 
 
 
 
beb9e09
 
 
9cefce7
 
 
 
 
 
 
 
 
beb9e09
9cefce7
 
 
 
 
beb9e09
9cefce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb9e09
 
9cefce7
 
 
 
 
 
beb9e09
9cefce7
 
 
 
beb9e09
9cefce7
 
beb9e09
 
9cefce7
beb9e09
9cefce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb9e09
9cefce7
 
 
 
 
beb9e09
9cefce7
 
beb9e09
9cefce7
beb9e09
9cefce7
 
 
 
 
 
 
 
 
 
beb9e09
9cefce7
 
beb9e09
 
 
 
9cefce7
beb9e09
9cefce7
beb9e09
9cefce7
 
beb9e09
9cefce7
 
beb9e09
 
9cefce7
 
 
 
 
 
beb9e09
9cefce7
 
beb9e09
 
 
 
9cefce7
beb9e09
 
 
 
 
 
 
9cefce7
 
 
beb9e09
9cefce7
 
 
beb9e09
 
 
9cefce7
 
beb9e09
9cefce7
 
 
 
beb9e09
9cefce7
 
beb9e09
9cefce7
 
 
 
 
beb9e09
9cefce7
 
 
beb9e09
 
 
 
 
9cefce7
beb9e09
9cefce7
 
beb9e09
9cefce7
 
beb9e09
9cefce7
beb9e09
 
9cefce7
beb9e09
 
 
 
 
9cefce7
beb9e09
9cefce7
beb9e09
9cefce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb9e09
9cefce7
 
 
 
 
 
 
 
 
 
beb9e09
9cefce7
 
beb9e09
 
9cefce7
 
 
beb9e09
9cefce7
 
 
 
 
beb9e09
 
 
 
 
 
 
9cefce7
beb9e09
 
9cefce7
 
 
 
beb9e09
 
9cefce7
beb9e09
9cefce7
 
 
beb9e09
9cefce7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""
FileName: mcts_Gumbel_Alphazero.py
Author: Jiaxin Li
Create Date: 2023/11/21
Description: The implement of  Gumbel MCST 
Edit History:
Debug: the dim of output: probs
"""

import numpy as np
import copy
import time

from .config.options import *
import sys
from .config.utils import *


def softmax(x):
    probs = np.exp(x - np.max(x))
    probs /= np.sum(probs)
    return probs


def _sigma_mano(y, Nb):
    return (50 + Nb) * 1.0 * y


class TreeNode(object):
    """A node in the MCTS tree.

    Each node keeps track of its own value Q, prior probability P, and
    its visit-count-adjusted prior score u.
    """

    def __init__(self, parent, prior_p):
        self._parent = parent
        self._children = {}  # a map from action to TreeNode
        self._n_visits = 0
        self._Q = 0
        self._u = 0
        self._v = 0
        self._p = prior_p

    def expand(self, action_priors):
        """Expand tree by creating new children.
        action_priors: a list of tuples of actions and their prior probability
            according to the policy function.
        """
        for action, prob in action_priors:
            if action not in self._children:
                self._children[action] = TreeNode(self, prob)

    def select(self, v_pi):
        """Select action among children that gives maximum 
        (pi'(a) - N(a) \ (1 + \sum_b N(b)))
        Return: A tuple of (action, next_node)
        """
        # if opts.split == "train":
        #     v_pi = v_pi.detach().numpy()
        # print(v_pi)

        max_N_b = np.max(np.array([act_node[1]._n_visits for act_node in self._children.items()]))

        if opts.split == "train":
            pi_ = softmax(np.array([act_node[1].get_pi(v_pi, max_N_b) for act_node in self._children.items()])).reshape(
                len(list(self._children.items())), -1)
        else:
            pi_ = softmax(np.array([act_node[1].get_pi(v_pi, max_N_b) for act_node in self._children.items()])).reshape(
                len(list(self._children.items())), -1)
        # print(pi_.shape)

        N_a = np.array([act_node[1]._n_visits / (1 + self._n_visits) for act_node in self._children.items()]).reshape(
            pi_.shape[0], -1)
        # print(N_a.shape)    

        max_index = np.argmax(pi_ - N_a)
        # print((pi_ - N_a).shape)

        return list(self._children.items())[max_index]

    def update(self, leaf_value):
        """Update node values from leaf evaluation.
        leaf_value: the value of subtree evaluation from the current player's
            perspective.
        """
        # Count visit.
        self._n_visits += 1
        # Update Q, a running average of values for all visits.
        if opts.split == "train":
            self._Q = self._Q + (1.0 * (leaf_value - self._Q) / self._n_visits)
        else:
            self._Q += (1.0 * (leaf_value - self._Q) / self._n_visits)

    def update_recursive(self, leaf_value):
        """Like a call to update(), but applied recursively for all ancestors.
        """
        # If it is not root, this node's parent should be updated first.
        if self._parent:
            self._parent.update_recursive(-leaf_value)
        self.update(leaf_value)

    def get_pi(self, v_pi, max_N_b):
        if self._n_visits == 0:
            Q_completed = v_pi
        else:
            Q_completed = self._Q

        return self._p + _sigma_mano(Q_completed, max_N_b)

    def get_value(self, c_puct):
        """Calculate and return the value for this node.
        It is a combination of leaf evaluations Q, and this node's prior
        adjusted for its visit count, u.
        c_puct: a number in (0, inf) controlling the relative impact of
            value Q, and prior probability P, on this node's score.
        """
        self._u = (c_puct * self._P *
                   np.sqrt(self._parent._n_visits) / (1 + self._n_visits))
        return self._Q + self._u

    def is_leaf(self):
        """Check if leaf node (i.e. no nodes below this have been expanded)."""
        return self._children == {}

    def is_root(self):
        return self._parent is None


class Gumbel_MCTS(object):
    """An implementation of Monte Carlo Tree Search."""

    def __init__(self, policy_value_fn, c_puct=5, n_playout=10000):
        """
        policy_value_fn: a function that takes in a board state and outputs
            a list of (action, probability) tuples and also a score in [-1, 1]
            (i.e. the expected value of the end game score from the current
            player's perspective) for the current player.
        c_puct: a number in (0, inf) that controls how quickly exploration
            converges to the maximum-value policy. A higher value means
            relying on the prior more.
        """
        self._root = TreeNode(None, 1.0)
        self._policy = policy_value_fn
        self._c_puct = c_puct
        self._n_playout = n_playout

    def Gumbel_playout(self, child_node, child_state):
        """Run a single playout from the child of the root to the leaf, getting a value at
        the leaf and propagating it back through its parents.
        State is modified in-place, so a copy must be provided.
        This mothod of select is a non-root selet.
        """
        node = child_node
        state = child_state

        while (1):
            if node.is_leaf():
                break
            # Greedily select next move.

            action, node = node.select(node._v)

            state.do_move(action)

        # Evaluate the leaf using a network which outputs a list of
        # (action, probability) tuples p and also a score v in [-1, 1]
        # for the current player.

        action_probs, leaf_value = self._policy(state)

        # leaf_value = leaf_value.detach().numpy()[0][0]
        leaf_value = leaf_value.detach().numpy()

        node._v = leaf_value

        # Check for end of game.
        end, winner = state.game_end()
        if not end:
            node.expand(action_probs)
        else:
            # for end state,return the "true" leaf_value
            if winner == -1:  # tie
                leaf_value = 0.0
            else:
                leaf_value = (
                    1.0 if winner == state.get_current_player() else -1.0
                )

        # Update value and visit count of nodes in this traversal.
        node.update_recursive(-leaf_value)

    def top_k(self, x, k):
        # print("x",x.shape)
        # print("k ", k)

        return np.argpartition(x, k)[..., -k:]

    def sample_k(self, logits, k):
        u = np.random.uniform(size=np.shape(logits))
        z = -np.log(-np.log(u))
        return self.top_k(logits + z, k), z

    def get_move_probs(self, state, temp=1e-3, m_action=16):
        """Run all playouts sequentially and return the available actions and
        their corresponding probabilities.
        state: the current game state
        temp: temperature parameter in (0, 1] controls the level of exploration
        """
        # 这里需要修改:1
        # logits 暂定为 p

        start_time = time.time()
        # 对根节点进行拓展

        act_probs, leaf_value = self._policy(state)

        act_probs = list(act_probs)

        # leaf_value = leaf_value.detach().numpy()[0][0]
        leaf_value = leaf_value.detach().numpy()
        # print(list(act_probs))
        porbs = [prob for act, prob in (act_probs)]

        self._root.expand(act_probs)

        n = self._n_playout
        m = min(m_action, int(len(porbs) / 2))

        # 先进行Gumbel 分布采样,不重复的采样前m个动作,对应选择公式 logits + g
        A_topm, g = self.sample_k(porbs, m)

        # 获得state选取每个action后对应的状态,保存到一个列表中
        root_childs = list(self._root._children.items())

        child_state_m = []
        for i in range(m):
            state_copy = copy.deepcopy(state)
            action, node = root_childs[A_topm[i]]
            state_copy.do_move(action)
            child_state_m.append(state_copy)
        print(porbs)

        print("depend on:", np.array(porbs)[A_topm])
        print(f"A_topm_{m}", A_topm)

        print("m ", m)

        if m > 1:
            # 每轮对选择的动作进行的仿真次数
            N = int(n / (np.log(m) * m))
        else:
            N = n

        # 进行sequential halving with Gumbel 
        while m >= 1:

            # 对每个选择的动作进行仿真
            for i in range(m):
                action_state = child_state_m[i]

                action, node = root_childs[A_topm[i]]

                for j in range(N):
                    action_state_copy = copy.deepcopy(action_state)

                    # 对选择动作进行仿真: 即找到这个子树的叶节点,然后再网络中预测v,然后往上回溯的过程
                    self.Gumbel_playout(node, action_state_copy)

            # 每轮不重复采样的动作个数减半
            m = m // 2

            # 不是最后一轮,单轮仿真次数加倍
            if (m != 1):
                n = n - N
                N *= 2
            # 当最后一轮时,只有一个动作,把所有仿真次数用完
            else:
                N = n

            # 进行新的一轮不重复采样, 采样在之前的动作前一半的动作, 对应公式 g + logits + \sigma( \hat{q} )
            # print([action_node[1]._Q for action_node in self._root._children.items()  ])

            q_hat = np.array([action_node[1]._Q for action_node in self._root._children.items()])
            assert (np.sum(q_hat[A_topm] == 0) == 0)

            print("depend on:", np.array(porbs)[A_topm] + np.array(g)[A_topm] + q_hat[A_topm])
            print(f"A_topm_{m}", A_topm)

            A_index = self.top_k(np.array(porbs)[A_topm] + np.array(g)[A_topm] + q_hat[A_topm], m)
            A_topm = np.array(A_topm)[A_index]
            child_state_m = np.array(child_state_m)[A_index]

        # 最后返回对应的决策函数, 即 pi' = softmax(logits + sigma(completed Q))

        max_N_b = np.max(np.array([act_node[1]._n_visits for act_node in self._root._children.items()]))

        final_act_probs = softmax(
            np.array([act_node[1].get_pi(leaf_value, max_N_b) for act_node in self._root._children.items()]))

        action = (np.array([act_node[0] for act_node in self._root._children.items()]))
        print("final_act_prbs", final_act_probs)
        print("move :", action)
        print("final_action", np.array(list(self._root._children.items()))[A_topm][0][0])
        print("argmax_prob", np.argmax(final_act_probs))
        need_time = time.time() - start_time
        print(f" Gumbel Alphazero sum_time: {need_time}, total_simulation: {self._n_playout}")

        return np.array(list(self._root._children.items()))[A_topm][0][0], action, final_act_probs, need_time

    def update_with_move(self, last_move):
        """Step forward in the tree, keeping everything we already know
        about the subtree.
        """
        if last_move in self._root._children:
            self._root = self._root._children[last_move]
            self._root._parent = None
        else:
            self._root = TreeNode(None, 1.0)

    def __str__(self):
        return "MCTS"


class Gumbel_MCTSPlayer(object):
    """AI player based on MCTS"""

    def __init__(self, policy_value_function,
                 c_puct=5, n_playout=2000, is_selfplay=0, m_action=16):
        self.mcts = Gumbel_MCTS(policy_value_function, c_puct, n_playout)
        self._is_selfplay = is_selfplay
        self.m_action = m_action

    def set_player_ind(self, p):
        self.player = p

    def reset_player(self):
        self.mcts.update_with_move(-1)

    def get_action(self, board, temp=1e-3, return_prob=0, return_time=False):
        sensible_moves = board.availables
        # the pi vector returned by MCTS as in the alphaGo Zero paper
        move_probs = np.zeros(board.width * board.height)

        if len(sensible_moves) > 0:

            # 在搜索树中利用sequential halving with Gumbel 来进行动作选择 并且返回对应的决策函数
            move, acts, probs, simul_mean_time = self.mcts.get_move_probs(board, temp, self.m_action)

            # 重置搜索树
            self.mcts.update_with_move(-1)

            move_probs[list(acts)] = probs
            move_probs = np.zeros(move_probs.shape[0])
            move_probs[move] = 1

            print("final prob:", move_probs)
            print("arg_max:", np.argmax(move_probs))
            print("max", np.max(move_probs))
            print("move", move)

            # 他通过训练能够使得最后move_probs 有一个位置趋近于1,即得到一个策略
            # 关键是他的策略,和MCTS得到move不一致,怀疑是分布策略计算的问题

            if return_time:

                if return_prob:

                    return move, move_probs, simul_mean_time
                else:
                    return move, simul_mean_time
            else:

                if return_prob:

                    return move, move_probs
                else:
                    return move
        else:
            print("WARNING: the board is full")

    def __str__(self):
        return "MCTS {}".format(self.player)