File size: 10,049 Bytes
172a1e4
 
 
 
 
 
 
 
e7a440c
 
 
 
 
172a1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7a440c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172a1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7a440c
172a1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# -*- coding: utf-8 -*-

import numpy as np
import copy
from operator import itemgetter
import time


def softmax(x):
    probs = np.exp(x - np.max(x))
    probs /= np.sum(probs)
    return probs

def rollout_policy_fn(board):
    """a coarse, fast version of policy_fn used in the rollout phase."""
    # rollout randomly
    action_probs = np.random.rand(len(board.availables))
    return zip(board.availables, action_probs)

# 决策价值函数
def policy_value_fn(board):
    """a function that takes in a state and outputs a list of (action, probability)
    tuples and a score for the state"""
    # return uniform probabilities and 0 score for pure MCTS
    action_probs = np.ones(len(board.availables))/len(board.availables)
    return zip(board.availables, action_probs), 0


class TreeNode(object):
    """A node in the MCTS tree. Each node keeps track of its own value Q,
    prior probability P, and its visit-count-adjusted prior score u.
    """

    def __init__(self, parent, prior_p):
        self._parent = parent
        self._children = {}  # a map from action to TreeNode
        self._n_visits = 0
        self._Q = 0
        self._u = 0
        self._P = prior_p

    def expand(self, action_priors):
        """Expand tree by creating new children.
        action_priors: a list of tuples of actions and their prior probability
            according to the policy function.
        """
        for action, prob in action_priors:
            if action not in self._children:
                self._children[action] = TreeNode(self, prob)

    def select(self, c_puct):
        """Select action among children that gives maximum action value Q
        plus bonus u(P).
        Return: A tuple of (action, next_node)
        """
        return max(self._children.items(),
                   key=lambda act_node: act_node[1].get_value(c_puct))

    def update(self, leaf_value):
        """Update node values from leaf evaluation.
        leaf_value: the value of subtree evaluation from the current player's
            perspective.
        """
        # Count visit.
        self._n_visits += 1
        # Update Q, a running average of values for all visits.
        # print("=====================================")
        # print("Before, Q: {}, visits: {}, leaf_value: {}".format(self._Q, self._n_visits,leaf_value))
        self._Q += 1.0*(leaf_value - self._Q) / self._n_visits
        # print("After, Q: {}, visits: {}, leaf_value: {}".format(self._Q, self._n_visits,leaf_value))


    def update_recursive(self, leaf_value):
        """Like a call to update(), but applied recursively for all ancestors.
        """
        # If it is not root, this node's parent should be updated first.
        if self._parent:
            self._parent.update_recursive(-leaf_value)
        self.update(leaf_value)

    def get_value(self, c_puct):
        """Calculate and return the value for this node.
        It is a combination of leaf evaluations Q, and this node's prior
        adjusted for its visit count, u.
        c_puct: a number in (0, inf) controlling the relative impact of
            value Q, and prior probability P, on this node's score.
        """
        self._u = (c_puct * self._P *
                   np.sqrt(self._parent._n_visits) / (1 + self._n_visits))
        return self._Q + self._u

    def is_leaf(self):
        """Check if leaf node (i.e. no nodes below this have been expanded).
        """
        return self._children == {}

    def is_root(self):
        return self._parent is None


class MCTS(object):
    """A simple implementation of Monte Carlo Tree Search."""

    def __init__(self, policy_value_fn, c_puct=5, n_playout=2000):
        """
        policy_value_fn: a function that takes in a board state and outputs
            a list of (action, probability) tuples and also a score in [-1, 1]
            (i.e. the expected value of the end game score from the current
            player's perspective) for the current player.
        c_puct: a number in (0, inf) that controls how quickly exploration
            converges to the maximum-value policy. A higher value means
            relying on the prior more. ??? 
        """
        self._root = TreeNode(None, 1.0)
        self._policy = policy_value_fn
        self._c_puct = c_puct
        self._n_playout = n_playout

    def _playout(self, state):
        """Run a single playout from the root to the leaf, getting a value at
        the leaf and propagating it back through its parents.
        State is modified in-place, so a copy must be provided.
        """
        node = self._root
        while(1):
            if node.is_leaf():

                break
            # Greedily select next move.
            action, node = node.select(self._c_puct)
            state.do_move(action)

        action_probs, _ = self._policy(state)
        # Check for end of game
        end, winner = state.game_end()
        if not end:
            node.expand(action_probs)
        # Evaluate the leaf node by random rollout
        leaf_value = self._evaluate_rollout(state)
        # Update value and visit count of nodes in this traversal.
        node.update_recursive(-leaf_value)

    def _evaluate_rollout(self, state, limit=1000):
        """Use the rollout policy to play until the end of the game,
        returning +1 if the current player wins, -1 if the opponent wins,
        and 0 if it is a tie.
        """
        player = state.get_current_player()
        for i in range(limit):
            end, winner = state.game_end()
            if end:
                break
            action_probs = rollout_policy_fn(state)
            max_action = max(action_probs, key=itemgetter(1))[0]
            state.do_move(max_action)
        else:
            # If no break from the loop, issue a warning.
            print("WARNING: rollout reached move limit")
        if winner == -1:  # tie
            return 0
        else:
            return 1 if winner == player else -1

    def get_move(self, state):
        """Runs all playouts sequentially and returns the most visited action.
        state: the current game state

        Return: the selected action
        """
        start_time = time.time()
        # n_playout 探索的次数
        for n in range(self._n_playout):
            state_copy = copy.deepcopy(state)
            self._playout(state_copy)

        need_time = time.time() - start_time
        
        print(f" PureMCTS sum_time: {need_time / self._n_playout }, total_simulation: {self._n_playout}")

        return max(self._root._children.items(),key=lambda act_node: act_node[1]._n_visits)[0], need_time / self._n_playout

    def update_with_move(self, last_move):
        """Step forward in the tree, keeping everything we already know
        about the subtree.
        """
        if last_move in self._root._children:
            self._root = self._root._children[last_move]
            self._root._parent = None
        else:
            self._root = TreeNode(None, 1.0)

    def get_move_probs(self, state, temp=1e-3):
        """Run all playouts sequentially and return the available actions and
        their corresponding probabilities.
        state: the current game state
        temp: temperature parameter in (0, 1] controls the level of exploration
        """

        start_time_averge = 0

        ### test multi-thread
        # lock = threading.Lock()
        # with ThreadPoolExecutor(max_workers=4) as executor:
        #     for n in range(self._n_playout):
        #         start_time = time.time()

        #         state_copy = copy.deepcopy(state)
        #         executor.submit(self._playout, state_copy, lock)
        #         start_time_averge += (time.time() - start_time)
        ### end test multi-thread

        t = time.time()
        for n in range(self._n_playout):
            start_time = time.time()

            state_copy = copy.deepcopy(state)
            self._playout(state_copy)
            start_time_averge += (time.time() - start_time)
        total_time = time.time() - t
        # print('!!time!!:', time.time() - t)

        print(f" My MCTS sum_time: {total_time}, total_simulation: {self._n_playout}")

        # calc the move probabilities based on visit counts at the root node
        act_visits = [(act, node._n_visits)
                      for act, node in self._root._children.items()]

        acts, visits = zip(*act_visits)

        act_probs = softmax(1.0 / temp * np.log(np.array(visits) + 1e-10))

        return 0, acts, act_probs, total_time

    def __str__(self):
        return "MCTS"



class MCTSPlayer(object):
    """AI player based on MCTS"""
    def __init__(self, c_puct=5, n_playout=2000):
        self.mcts = MCTS(policy_value_fn, c_puct, n_playout)

    def set_player_ind(self, p):
        self.player = p

    def reset_player(self):
        self.mcts.update_with_move(-1)

    def get_action(self, board, return_time=False):
        sensible_moves = board.availables
        if len(sensible_moves) > 0:
            move, simul_mean_time = self.mcts.get_move(board)
            self.mcts.update_with_move(-1)
            print("MCTS move:", move)
            return move, simul_mean_time
        else:
            print("WARNING: the board is full")


    def __str__(self):
        return "MCTS {}".format(self.player)
    

# 多了下面这一串代码
    
class Human_Player(object):
    def __init__(self):
        pass


    def set_player_ind(self, p):
        self.player = p


    def get_action(self, board):


        sensible_moves = board.availables
        if len(sensible_moves) > 0:
            # print(sensible_moves)
        
            move = int(input("Input the move:"))
            while (move not in sensible_moves ):
                print(sensible_moves)
                move = int(input("Input the move again:"))
            return move
        else:
            print("WARNING: the board is full")

    def __str__(self):
        return "Human {}".format(self.player)