File size: 9,287 Bytes
7d23b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

import re

# Define patterns using regular expressions
patterns = {
    'five': re.compile('11111'),
    'block_five': re.compile('211111|111112'),
    'four': re.compile('011110'),
    'block_four': re.compile('10111|11011|11101|211110|211101|211011|210111|011112|101112|110112|111012'),
    'three': re.compile('011100|011010|010110|001110'),
    'block_three': re.compile('211100|211010|210110|001112|010112|011012'),
    'two': re.compile('001100|011000|000110|010100|001010'),
}

# Define shapes with associated scores
shapes = {
    'FIVE': 5,
    'BLOCK_FIVE': 50,
    'FOUR': 4,
    'FOUR_FOUR': 44,  # Double four
    'FOUR_THREE': 43,  # Four with an open three
    'THREE_THREE': 33,  # Double three
    'BLOCK_FOUR': 40,
    'THREE': 3,
    'BLOCK_THREE': 30,
    'TWO_TWO': 22,  # Double two
    'TWO': 2,
    'NONE': 0
}

# Initialize a performance record
performance = {
    'five': 0,
    'block_five': 0,
    'four': 0,
    'block_four': 0,
    'three': 0,
    'block_three': 0,
    'two': 0,
    'none': 0,
    'total': 0
}

# Function to detect shapes on the board
def get_shape(board, x, y, offset_x, offset_y, role):
    """
    Detect shape at a given board position.
    :param board: The game board.
    :param x: X-coordinate.
    :param y: Y-coordinate.
    :param offset_x: X-direction offset for scanning.
    :param offset_y: Y-direction offset for scanning.
    :param role: Current player's role.
    :return: A tuple of shape, self count, opponent count, and empty count.
    """
    opponent = -role
    empty_count = 0
    self_count = 1
    opponent_count = 0
    shape = shapes['NONE']

    # Skip empty nodes
    if (
        board[x + offset_x + 1][y + offset_y + 1] == 0
        and board[x - offset_x + 1][y - offset_y + 1] == 0
        and board[x + 2 * offset_x + 1][y + 2 * offset_y + 1] == 0
        and board[x - 2 * offset_x + 1][y - 2 * offset_y + 1] == 0
    ):
        return [0, self_count, opponent_count, empty_count]
    # Check for 'two' pattern
    for i in range(-3, 4):
        if i == 0:
            continue
        nx, ny = x + i * offset_x, y + i * offset_y
        current_role = board.get((nx, ny))
        if current_role is None:
            continue
        if current_role == 2:
            opponent_count += 1
        elif current_role == role:
            self_count += 1
        elif current_role == 0:
            empty_count += 1

    if self_count == 2:
        if opponent_count == 0:
            return shapes['TWO'], self_count, opponent_count, empty_count
        else:
            return shapes['NONE'], self_count, opponent_count, empty_count

    # Reset counts and prepare string for pattern matching
    empty_count, self_count, opponent_count = 0, 1, 0
    result_string = '1'

    # Build result string for pattern matching
    for i in range(1, 6):
        nx = x + i * offset_x + 1
        ny = y + i * offset_y + 1
        currentRole = board[nx][ny]
        if currentRole == 2:
            result_string += '2'
        elif currentRole == 0:
            result_string += '0'
        else:
            result_string += '1' if currentRole == role else '2'
        if currentRole == 2 or currentRole == opponent:
            opponent_count += 1
            break
        if currentRole == 0:
            empty_count += 1
        if currentRole == role:
            self_count += 1
    
    for i in range(1, 6):
        nx = x - i * offset_x + 1
        ny = y - i * offset_y + 1
        currentRole = board[nx][ny]
        if currentRole == 2:
            result_string = '2' + result_string
        elif currentRole == 0:
            result_string = '0' + result_string
        else:
            result_string = '1' if currentRole == role else '2' + result_string
        if currentRole == 2 or currentRole == opponent:
            opponent_count += 1
            break
        if currentRole == 0:
            empty_count += 1
        if currentRole == role:
            self_count += 1

    # Check patterns and update performance
    for pattern_key, shape_key in [('five', 'FIVE'), ('four', 'FOUR'), ('block_four', 'BLOCK_FOUR'),
                                   ('three', 'THREE'), ('block_three', 'BLOCK_THREE'), ('two', 'TWO')]:
        if patterns[pattern_key].search(result_string):
            shape = shapes[shape_key]
            performance[pattern_key] += 1
            performance['total'] += 1
            break
    ## 尽量减少多余字符串生成
    if self_count <= 1 or len(result_string) < 5:
        return shape, self_count, opponent_count, empty_count

    return shape, self_count, opponent_count, empty_count

def count_shape(board, x, y, offset_x, offset_y, role):
    opponent = - role

    inner_empty_count = 0  # Number of empty positions inside the player's stones
    temp_empty_count = 0
    self_count = 0  # Number of the player's stones in the shape
    total_length = 0

    side_empty_count = 0  # Number of empty positions on the side of the shape
    no_empty_self_count = 0
    one_empty_self_count = 0

    # Right direction
    for i in range(1, 6):
        nx = x + i * offset_x + 1
        ny = y + i * offset_y + 1
        current_role = board[nx][ny]
        if current_role == 2 or current_role == opponent:
            break
        if current_role == role:
            self_count += 1
            side_empty_count = 0
            if temp_empty_count:
                inner_empty_count += temp_empty_count
                temp_empty_count = 0
            if inner_empty_count == 0:
                no_empty_self_count += 1
                one_empty_self_count += 1
            elif inner_empty_count == 1:
                one_empty_self_count += 1
        total_length += 1
        if current_role == 0:
            temp_empty_count += 1
            side_empty_count += 1
        if side_empty_count >= 2:
            break

    if not inner_empty_count:
        one_empty_self_count = 0

    return {
        'self_count': self_count,
        'total_length': total_length,
        'no_empty_self_count': no_empty_self_count,
        'one_empty_self_count': one_empty_self_count,
        'inner_empty_count': inner_empty_count,
        'side_empty_count': side_empty_count
    }

# Fast shape detection function
def get_shape_fast(board, x, y, offsetX, offsetY, role):
    if (
        board[x + offsetX + 1][y + offsetY + 1] == 0
        and board[x - offsetX + 1][y - offsetY + 1] == 0
        and board[x + 2 * offsetX + 1][y + 2 * offsetY + 1] == 0
        and board[x - 2 * offsetX + 1][y - 2 * offsetY + 1] == 0
    ):
        return [shapes['NONE'], 1]

    selfCount = 1
    totalLength = 1
    shape = shapes['NONE']

    leftEmpty = 0
    rightEmpty = 0
    noEmptySelfCount = 1
    OneEmptySelfCount = 1

    left = count_shape(board, x, y, -offsetX, -offsetY, role)
    right = count_shape(board, x, y, offsetX, offsetY, role)

    selfCount = left['self_count'] + right['self_count'] + 1
    totalLength = left['total_length'] + right['total_length'] + 1
    noEmptySelfCount = left['no_empty_self_count'] + right['no_empty_self_count'] + 1
    OneEmptySelfCount = max(
        left['one_empty_self_count'] + right['no_empty_self_count'],
        left['no_empty_self_count'] + right['one_empty_self_count'],
    ) + 1
    rightEmpty = right['side_empty_count']
    leftEmpty = left['side_empty_count']

    if totalLength < 5:
        return [shape, selfCount]

    if noEmptySelfCount >= 5:
        if rightEmpty > 0 and leftEmpty > 0:
            return [shapes['FIVE'], selfCount]
        else:
            return [shapes['BLOCK_FIVE'], selfCount]

    if noEmptySelfCount == 4:
        if (
            (rightEmpty >= 1 or right['one_empty_self_count'] > right['no_empty_self_count'])
            and (leftEmpty >= 1 or left['one_empty_self_count'] > left['no_empty_self_count'])
        ):
            return [shapes['FOUR'], selfCount]
        elif not (rightEmpty == 0 and leftEmpty == 0):
            return [shapes['BLOCK_FOUR'], selfCount]

    if OneEmptySelfCount == 4:
        return [shapes['BLOCK_FOUR'], selfCount]

    if noEmptySelfCount == 3:
        if (rightEmpty >= 2 and leftEmpty >= 1) or (rightEmpty >= 1 and leftEmpty >= 2):
            return [shapes['THREE'], selfCount]
        else:
            return [shapes['BLOCK_THREE'], selfCount]

    if OneEmptySelfCount == 3:
        if rightEmpty >= 1 and leftEmpty >= 1:
            return [shapes['THREE'], selfCount]
        else:
            return [shapes['BLOCK_THREE'], selfCount]

    if (noEmptySelfCount == 2 or OneEmptySelfCount == 2) and totalLength > 5:
        shape = shapes['TWO']

    return [shape, selfCount]

# Helper functions to check for specific shapes
def is_five(shape):
    # Checked
    return shape in [shapes['FIVE'], shapes['BLOCK_FIVE']]

def is_four(shape):
    # Checked
    return shape in [shapes['FOUR'], shapes['BLOCK_FOUR']]

# Function to get all shapes at a specific point
def get_all_shapes_of_point(shape_cache, x, y, role = None):
    # Checked
    roles = [role] if role else [1, -1]
    result = []
    for r in roles:
        for d in range(4):
            shape = shape_cache[r][d][x][y]
            if shape > 0:
                result.append(shape)
    return result


if __name__ == "__main__":
    pass