Spaces:
Sleeping
Sleeping
File size: 13,067 Bytes
172a1e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from __future__ import print_function
import random
import numpy as np
from collections import defaultdict, deque
from game import Board, Game
from mcts_pure import MCTSPlayer as MCTS_Pure
from mcts_alphaZero import MCTSPlayer
import torch.optim as optim
# from policy_value_net import PolicyValueNet # Theano and Lasagne
# from policy_value_net_pytorch import PolicyValueNet # Pytorch
from dueling_net import PolicyValueNet
# from policy_value_net_tensorflow import PolicyValueNet # Tensorflow
# from policy_value_net_keras import PolicyValueNet # Keras
# import joblib
from torch.autograd import Variable
import torch.nn.functional as F
from config.options import *
import sys
from config.utils import *
from torch.backends import cudnn
import torch
from tqdm import *
from torch.utils.tensorboard import SummaryWriter
from multiprocessing import Pool
def set_learning_rate(optimizer, lr):
"""Sets the learning rate to the given value"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def std_log():
if get_rank() == 0:
save_path = make_path()
makedir(config['log_base'])
sys.stdout = open(os.path.join(config['log_base'], "{}.txt".format(save_path)), "w")
def init_seeds(seed, cuda_deterministic=True):
torch.manual_seed(seed)
if cuda_deterministic: # slower, more reproducible
cudnn.deterministic = True
cudnn.benchmark = False
else: # faster, less reproducible
cudnn.deterministic = False
cudnn.benchmark = True
class MainWorker():
def __init__(self,device):
#--- init the set of pipeline -------
self.board_width = opts.board_width
self.board_height = opts.board_height
self.n_in_row = opts.n_in_row
self.learn_rate = opts.learn_rate
self.lr_multiplier = opts.lr_multiplier
self.temp = opts.temp
self.n_playout = opts.n_playout
self.c_puct = opts.c_puct
self.buffer_size = opts.buffer_size
self.batch_size = opts.batch_size
self.play_batch_size = opts.play_batch_size
self.epochs = opts.epochs
self.kl_targ = opts.kl_targ
self.check_freq = opts.check_freq
self.game_batch_num = opts.game_batch_num
self.pure_mcts_playout_num = opts.pure_mcts_playout_num
self.device = device
self.use_gpu = torch.device("cuda") == self.device
self.board = Board(width=self.board_width,
height=self.board_height,
n_in_row=self.n_in_row)
self.game = Game(self.board)
# The data collection of the history of games
self.data_buffer = deque(maxlen=self.buffer_size)
# The best win ratio of the training agent
self.best_win_ratio = 0.0
if opts.preload_model:
# start training from an initial policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,
self.board_height,
model_file=opts.preload_model,
use_gpu=(self.device == "cuda"))
else:
# start training from a new policy-value net
self.policy_value_net = PolicyValueNet(self.board_width,
self.board_height,
use_gpu=(self.device == "cuda"))
self.mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
c_puct=self.c_puct,
n_playout=self.n_playout,
is_selfplay=1)
# The set of optimizer
self.optimizer = optim.Adam(self.policy_value_net.policy_value_net.parameters(),
weight_decay=opts.l2_const)
# set learning rate
set_learning_rate(self.optimizer, self.learn_rate*self.lr_multiplier)
def get_equi_data(self, play_data):
"""augment the data set by rotation and flipping
play_data: [(state, mcts_prob, winner_z), ..., ...]
"""
extend_data = []
for state, mcts_porb, winner in play_data:
for i in [1, 2, 3, 4]:
# rotate counterclockwise
equi_state = np.array([np.rot90(s, i) for s in state])
equi_mcts_prob = np.rot90(np.flipud(
mcts_porb.reshape(self.board_height, self.board_width)), i)
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
# flip horizontally
equi_state = np.array([np.fliplr(s) for s in equi_state])
equi_mcts_prob = np.fliplr(equi_mcts_prob)
extend_data.append((equi_state,
np.flipud(equi_mcts_prob).flatten(),
winner))
return extend_data
def job(self, i):
game = self.game
player = self.mcts_player
winner, play_data = game.start_self_play(player,
temp=self.temp)
play_data = list(play_data)[:]
play_data = self.get_equi_data(play_data)
return play_data
def collect_selfplay_data(self, n_games=1):
"""collect self-play data for training"""
# print("[STAGE] Collecting self-play data for training")
# collection_bar = tqdm( range(n_games))
collection_bar = range(n_games)
with Pool(4) as p:
play_data = p.map(self.job, collection_bar, chunksize=1)
self.data_buffer.extend(play_data)
# print('\n', 'data buffer size:', len(self.data_buffer))
def policy_update(self):
"""update the policy-value net"""
mini_batch = random.sample(self.data_buffer, self.batch_size)
state_batch = [data[0] for data in mini_batch]
mcts_probs_batch = [data[1] for data in mini_batch]
winner_batch = [data[2] for data in mini_batch]
old_probs, old_v = self.policy_value_net.policy_value(state_batch)
epoch_bar = tqdm(range(self.epochs))
for i in epoch_bar:
"""perform a training step"""
# wrap in Variable
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).cuda())
mcts_probs = Variable(torch.FloatTensor(mcts_probs_batch).cuda())
winner_batch = Variable(torch.FloatTensor(winner_batch).cuda())
else:
state_batch = Variable(torch.FloatTensor(state_batch))
mcts_probs = Variable(torch.FloatTensor(mcts_probs_batch))
winner_batch = Variable(torch.FloatTensor(winner_batch))
# zero the parameter gradients
self.optimizer.zero_grad()
# forward
log_act_probs, value = self.policy_value_net.policy_value_net(state_batch)
# define the loss = (z - v)^2 - pi^T * log(p) + c||theta||^2
# Note: the L2 penalty is incorporated in optimizer
value_loss = F.mse_loss(value.view(-1), winner_batch)
policy_loss = -torch.mean(torch.sum(mcts_probs*log_act_probs, 1))
loss = value_loss + policy_loss
# backward and optimize
loss.backward()
self.optimizer.step()
# calc policy entropy, for monitoring only
entropy = -torch.mean(
torch.sum(torch.exp(log_act_probs) * log_act_probs, 1)
)
loss = loss.item()
entropy = entropy.item()
new_probs, new_v = self.policy_value_net.policy_value(state_batch)
kl = np.mean(np.sum(old_probs * (
np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)),
axis=1)
)
if kl > self.kl_targ * 4: # early stopping if D_KL diverges badly
break
epoch_bar.set_description(f"training epoch {i}")
epoch_bar.set_postfix( new_v =new_v, kl = kl)
# adaptively adjust the learning rate
if kl > self.kl_targ * 2 and self.lr_multiplier > 0.1:
self.lr_multiplier /= 1.5
elif kl < self.kl_targ / 2 and self.lr_multiplier < 10:
self.lr_multiplier *= 1.5
explained_var_old = (1 -
np.var(np.array(winner_batch) - old_v.flatten()) /
np.var(np.array(winner_batch)))
explained_var_new = (1 -
np.var(np.array(winner_batch) - new_v.flatten()) /
np.var(np.array(winner_batch)))
return kl, loss, entropy,explained_var_old, explained_var_new
def policy_evaluate(self, n_games=10):
"""
Evaluate the trained policy by playing against the pure MCTS player
Note: this is only for monitoring the progress of training
"""
current_mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
c_puct=self.c_puct,
n_playout=self.n_playout)
pure_mcts_player = MCTS_Pure(c_puct=5,
n_playout=self.pure_mcts_playout_num)
win_cnt = defaultdict(int)
for i in range(n_games):
winner = self.game.start_play(
pure_mcts_player,current_mcts_player,
start_player=i % 2,
is_shown=0)
win_cnt[winner] += 1
print(f" {i}_th winner:" , winner)
win_ratio = 1.0*(win_cnt[1] + 0.5*win_cnt[-1]) / n_games
print("num_playouts:{}, win: {}, lose: {}, tie:{}".format(
self.pure_mcts_playout_num,
win_cnt[1], win_cnt[2], win_cnt[-1]))
return win_ratio
def run(self):
"""run the training pipeline"""
try:
batch_bar = tqdm(range(self.game_batch_num))
for i in batch_bar:
self.collect_selfplay_data(self.play_batch_size)
if len(self.data_buffer) > self.batch_size:
kl, loss, entropy,explained_var_old, explained_var_new = self.policy_update()
writer.add_scalar("policy_update/kl", kl ,i )
writer.add_scalar("policy_update/loss", loss ,i)
writer.add_scalar("policy_update/entropy", entropy ,i)
writer.add_scalar("policy_update/explained_var_old", explained_var_old,i)
writer.add_scalar("policy_update/explained_var_new ", explained_var_new ,i)
batch_bar.set_description(f"game batch num {i}")
# check the performance of the current model,
# and save the model params
if (i+1) % self.check_freq == 0:
win_ratio = self.policy_evaluate()
batch_bar.set_description(f"game batch num {i+1}")
writer.add_scalar("evaluate/explained_var_new ", win_ratio ,i)
batch_bar.set_postfix(loss= loss, entropy= entropy,win_ratio =win_ratio)
save_model(self.policy_value_net,"current_policy.model")
if win_ratio > self.best_win_ratio:
print("New best policy!!!!!!!!")
self.best_win_ratio = win_ratio
# update the best_policy
save_model(self.policy_value_net,"best_policy.model")
if (self.best_win_ratio == 1.0 and
self.pure_mcts_playout_num < 5000):
self.pure_mcts_playout_num += 1000
self.best_win_ratio = 0.0
except KeyboardInterrupt:
print('\n\rquit')
if __name__ == "__main__":
print("START train....")
# ------init set-----------
if opts.std_log:
std_log()
writer = visualizer()
if opts.distributed:
torch.distributed.init_process_group(backend="nccl")
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
init_seeds(opts.seed + local_rank)
else:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
init_seeds(opts.seed)
print("seed: ",opts.seed )
print("device:" , device)
if opts.split == "train":
training_pipeline = MainWorker(device)
training_pipeline.run()
if get_rank() == 0 and opts.split == "test":
training_pipeline = MainWorker(device)
training_pipeline.policy_value_net()
|