File size: 13,067 Bytes
172a1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
from __future__ import print_function
import random
import numpy as np
from collections import defaultdict, deque
from game import Board, Game
from mcts_pure import MCTSPlayer as MCTS_Pure
from mcts_alphaZero import MCTSPlayer
import torch.optim as optim
# from policy_value_net import PolicyValueNet  # Theano and Lasagne
# from policy_value_net_pytorch import PolicyValueNet  # Pytorch
from dueling_net import PolicyValueNet
# from policy_value_net_tensorflow import PolicyValueNet # Tensorflow
# from policy_value_net_keras import PolicyValueNet # Keras
# import joblib
from torch.autograd import Variable
import torch.nn.functional as F


from config.options import *
import sys
from config.utils  import *
from torch.backends import cudnn

import torch

from tqdm import *
from torch.utils.tensorboard import SummaryWriter

from multiprocessing import Pool

def set_learning_rate(optimizer, lr):
    """Sets the learning rate to the given value"""
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

def std_log():
    if get_rank() == 0:
        save_path = make_path()
        makedir(config['log_base'])
        sys.stdout = open(os.path.join(config['log_base'], "{}.txt".format(save_path)), "w")


def init_seeds(seed, cuda_deterministic=True):
    torch.manual_seed(seed)
    if cuda_deterministic:  # slower, more reproducible
       cudnn.deterministic = True
       cudnn.benchmark = False
    else:  # faster, less reproducible
       cudnn.deterministic = False
       cudnn.benchmark = True




class MainWorker():
    def __init__(self,device):

        #--- init the set of pipeline -------
        self.board_width = opts.board_width
        self.board_height = opts.board_height
        self.n_in_row = opts.n_in_row
        self.learn_rate = opts.learn_rate
        self.lr_multiplier = opts.lr_multiplier
        self.temp = opts.temp 
        self.n_playout = opts.n_playout  
        self.c_puct = opts.c_puct
        self.buffer_size = opts.buffer_size
        self.batch_size = opts.batch_size  
        self.play_batch_size = opts.play_batch_size
        self.epochs = opts.epochs 
        self.kl_targ = opts.kl_targ
        self.check_freq = opts.check_freq
        self.game_batch_num = opts.game_batch_num 
        self.pure_mcts_playout_num = opts.pure_mcts_playout_num

        self.device = device
        self.use_gpu = torch.device("cuda") ==  self.device

        self.board = Board(width=self.board_width,
                           height=self.board_height,
                           n_in_row=self.n_in_row) 
        self.game = Game(self.board) 

        # The data collection of the history of games
        self.data_buffer = deque(maxlen=self.buffer_size) 


        # The best win ratio of the training agent
        self.best_win_ratio = 0.0 


        if opts.preload_model:
            # start training from an initial policy-value net
            self.policy_value_net = PolicyValueNet(self.board_width,
                                                   self.board_height,
                                                   model_file=opts.preload_model,
                                                   use_gpu=(self.device == "cuda"))

        else:
            # start training from a new policy-value net
            self.policy_value_net = PolicyValueNet(self.board_width,
                                                   self.board_height,
                                                   use_gpu=(self.device == "cuda"))
        self.mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
                                      c_puct=self.c_puct,
                                      n_playout=self.n_playout,
                                      is_selfplay=1)
        
        # The set of optimizer
        self.optimizer = optim.Adam(self.policy_value_net.policy_value_net.parameters(),
                                            weight_decay=opts.l2_const)  
        # set learning rate
        set_learning_rate(self.optimizer, self.learn_rate*self.lr_multiplier)
        

 

    def get_equi_data(self, play_data):
        """augment the data set by rotation and flipping
        play_data: [(state, mcts_prob, winner_z), ..., ...]
        """
        extend_data = []
        for state, mcts_porb, winner in play_data:
            for i in [1, 2, 3, 4]:
                # rotate counterclockwise
                equi_state = np.array([np.rot90(s, i) for s in state])
                equi_mcts_prob = np.rot90(np.flipud(
                    mcts_porb.reshape(self.board_height, self.board_width)), i)
                extend_data.append((equi_state,
                                    np.flipud(equi_mcts_prob).flatten(),
                                    winner))
                # flip horizontally
                equi_state = np.array([np.fliplr(s) for s in equi_state])
                equi_mcts_prob = np.fliplr(equi_mcts_prob)
                extend_data.append((equi_state,
                                    np.flipud(equi_mcts_prob).flatten(),
                                    winner))
        return extend_data

    def job(self, i):
        game = self.game
        player = self.mcts_player
        winner, play_data = game.start_self_play(player,
                                                    temp=self.temp)
        play_data = list(play_data)[:]
        play_data = self.get_equi_data(play_data)

        return play_data

    def collect_selfplay_data(self, n_games=1):
        """collect self-play data for training"""
        # print("[STAGE] Collecting self-play data for training")

        # collection_bar = tqdm( range(n_games))
        collection_bar = range(n_games)
        with Pool(4) as p:
            play_data = p.map(self.job, collection_bar, chunksize=1)
        self.data_buffer.extend(play_data)
        # print('\n', 'data buffer size:', len(self.data_buffer))

    def policy_update(self):
        """update the policy-value net"""
        mini_batch = random.sample(self.data_buffer, self.batch_size)
        state_batch = [data[0] for data in mini_batch]
        mcts_probs_batch = [data[1] for data in mini_batch]
        winner_batch = [data[2] for data in mini_batch]
        old_probs, old_v = self.policy_value_net.policy_value(state_batch)

        epoch_bar = tqdm(range(self.epochs))

        for i in epoch_bar:
            """perform a training step"""
            # wrap in Variable
            if self.use_gpu:
                state_batch = Variable(torch.FloatTensor(state_batch).cuda())
                mcts_probs = Variable(torch.FloatTensor(mcts_probs_batch).cuda())
                winner_batch = Variable(torch.FloatTensor(winner_batch).cuda())
            else:
                state_batch = Variable(torch.FloatTensor(state_batch))
                mcts_probs = Variable(torch.FloatTensor(mcts_probs_batch))
                winner_batch = Variable(torch.FloatTensor(winner_batch))

            # zero the parameter gradients
            self.optimizer.zero_grad()

            # forward
            log_act_probs, value = self.policy_value_net.policy_value_net(state_batch)
            # define the loss = (z - v)^2 - pi^T * log(p) + c||theta||^2
            # Note: the L2 penalty is incorporated in optimizer
            value_loss = F.mse_loss(value.view(-1), winner_batch)
            policy_loss = -torch.mean(torch.sum(mcts_probs*log_act_probs, 1))
            loss = value_loss + policy_loss
            # backward and optimize
            loss.backward()
            self.optimizer.step()
            # calc policy entropy, for monitoring only
            entropy = -torch.mean(
                    torch.sum(torch.exp(log_act_probs) * log_act_probs, 1)
                    )
            loss = loss.item()
            entropy = entropy.item()
    
            new_probs, new_v = self.policy_value_net.policy_value(state_batch)
            kl = np.mean(np.sum(old_probs * (
                    np.log(old_probs + 1e-10) - np.log(new_probs + 1e-10)),
                    axis=1)
            )
            if kl > self.kl_targ * 4:  # early stopping if D_KL diverges badly
                break

            epoch_bar.set_description(f"training epoch {i}")
            epoch_bar.set_postfix( new_v =new_v, kl = kl)

        # adaptively adjust the learning rate
        if kl > self.kl_targ * 2 and self.lr_multiplier > 0.1:
            self.lr_multiplier /= 1.5
        elif kl < self.kl_targ / 2 and self.lr_multiplier < 10:
            self.lr_multiplier *= 1.5



        explained_var_old = (1 -
                             np.var(np.array(winner_batch) - old_v.flatten()) /
                             np.var(np.array(winner_batch)))
        explained_var_new = (1 -
                             np.var(np.array(winner_batch) - new_v.flatten()) /
                             np.var(np.array(winner_batch)))
        

    

        return   kl,  loss, entropy,explained_var_old, explained_var_new

    def policy_evaluate(self, n_games=10):
        """
        Evaluate the trained policy by playing against the pure MCTS player
        Note: this is only for monitoring the progress of training
        """
        current_mcts_player = MCTSPlayer(self.policy_value_net.policy_value_fn,
                                         c_puct=self.c_puct,
                                         n_playout=self.n_playout)
        pure_mcts_player = MCTS_Pure(c_puct=5,
                                     n_playout=self.pure_mcts_playout_num)
        win_cnt = defaultdict(int)
        for i in range(n_games):
            
            winner = self.game.start_play(
                                          pure_mcts_player,current_mcts_player,
                                          start_player=i % 2,
                                          is_shown=0)
            win_cnt[winner] += 1
            print(f" {i}_th winner:" , winner)
        win_ratio = 1.0*(win_cnt[1] + 0.5*win_cnt[-1]) / n_games
        print("num_playouts:{}, win: {}, lose: {}, tie:{}".format(
                self.pure_mcts_playout_num,
                win_cnt[1], win_cnt[2], win_cnt[-1]))
        return win_ratio

    def run(self):
        """run the training pipeline"""
        try:

            batch_bar = tqdm(range(self.game_batch_num))
            for i in batch_bar:
                self.collect_selfplay_data(self.play_batch_size)

                if len(self.data_buffer) > self.batch_size:
                    kl,  loss, entropy,explained_var_old, explained_var_new = self.policy_update()

                    writer.add_scalar("policy_update/kl", kl ,i )
                    writer.add_scalar("policy_update/loss", loss ,i)
                    writer.add_scalar("policy_update/entropy", entropy ,i)
                    writer.add_scalar("policy_update/explained_var_old", explained_var_old,i)
                    writer.add_scalar("policy_update/explained_var_new ", explained_var_new ,i)


                batch_bar.set_description(f"game batch num {i}")
    
                # check the performance of the current model,
                # and save the model params
                if (i+1) % self.check_freq == 0:
                    win_ratio = self.policy_evaluate()

                    batch_bar.set_description(f"game batch num {i+1}")
                    writer.add_scalar("evaluate/explained_var_new ", win_ratio ,i)
                    batch_bar.set_postfix(loss= loss, entropy= entropy,win_ratio =win_ratio)

                    save_model(self.policy_value_net,"current_policy.model")
                    if win_ratio > self.best_win_ratio:
                        print("New best policy!!!!!!!!")
                        self.best_win_ratio = win_ratio
                        # update the best_policy
                        save_model(self.policy_value_net,"best_policy.model")
                        if (self.best_win_ratio == 1.0 and
                                self.pure_mcts_playout_num < 5000):
                            self.pure_mcts_playout_num += 1000
                            self.best_win_ratio = 0.0
        except KeyboardInterrupt:
            print('\n\rquit')


if __name__ == "__main__":
    print("START train....")

    # ------init set-----------

    if opts.std_log:
        std_log()
    writer = visualizer()
    

    if opts.distributed:
        torch.distributed.init_process_group(backend="nccl")
        local_rank = torch.distributed.get_rank()
        torch.cuda.set_device(local_rank)
        device = torch.device("cuda", local_rank)
        init_seeds(opts.seed + local_rank)
        
    else:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        init_seeds(opts.seed)

    print("seed: ",opts.seed )
    print("device:" , device)


    if opts.split == "train":
        training_pipeline = MainWorker(device)
        training_pipeline.run()

    if get_rank() == 0 and opts.split == "test":
        training_pipeline = MainWorker(device)
        training_pipeline.policy_value_net()