Spaces:
Sleeping
Sleeping
File size: 9,371 Bytes
beb9e09 d97a106 beb9e09 d97a106 beb9e09 d97a106 beb9e09 d97a106 beb9e09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# -*- coding: utf-8 -*-
"""
An implementation of the policyValueNet in PyTorch
Tested in PyTorch 0.2.0 and 0.3.0
@author: Junxiao Song
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def set_learning_rate(optimizer, lr):
"""Sets the learning rate to the given value"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
def forward(self, x):
residual = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += residual
return F.relu(out)
class Net(nn.Module):
"""Policy-Value network module for AlphaZero Gomoku."""
def __init__(self, board_width, board_height, num_residual_blocks=5):
super(Net, self).__init__()
self.board_width = board_width
self.board_height = board_height
self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.res_layers = nn.Sequential(*[ResidualBlock(32) for _ in range(num_residual_blocks)])
# Action Policy layers
self.act_conv1 = nn.Conv2d(32, 4, kernel_size=1)
self.act_fc1 = nn.Linear(4 * board_width * board_height, board_width * board_height)
# State Value layers
self.val_conv1 = nn.Conv2d(32, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2 * board_width * board_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.res_layers(x)
# Action Policy head
x_act = F.relu(self.act_conv1(x))
x_act = x_act.view(-1, 4 * self.board_width * self.board_height)
x_act = F.log_softmax(self.act_fc1(x_act), dim=1)
# State Value head
x_val = F.relu(self.val_conv1(x))
x_val = x_val.view(-1, 2 * self.board_width * self.board_height)
x_val = F.relu(self.val_fc1(x_val))
x_val = torch.tanh(self.val_fc2(x_val))
return x_act, x_val
class PolicyValueNet():
"""policy-value network """
def __init__(self, board_width, board_height,
model_file=None, use_gpu=False, bias=False):
self.device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
self.use_gpu = use_gpu
self.l2_const = 1e-4 # coef of l2 penalty
self.board_width = board_width
self.board_height = board_height
self.bias = bias
if model_file:
net_params = torch.load(model_file, map_location='cpu' if not use_gpu else None)
# Infer board dimensions from the loaded model
inferred_width, inferred_height = self.infer_board_size_from_model(net_params)
if inferred_width and inferred_height:
self.policy_value_net = Net(inferred_width, inferred_height).to(self.device) if use_gpu else Net(
inferred_width, inferred_height)
self.policy_value_net.load_state_dict(net_params)
print("Use model file to initialize the policy value net")
else:
raise Exception("The model file does not contain the board dimensions")
if inferred_width < board_width:
self.use_conv = True
elif inferred_width > board_width:
raise Exception("The model file has a larger board size than the current board size!!")
else:
# the policy value net module
if self.use_gpu:
self.policy_value_net = Net(board_width, board_height).to(self.device)
else:
self.policy_value_net = Net(board_width, board_height)
self.optimizer = optim.Adam(self.policy_value_net.parameters(),
weight_decay=self.l2_const)
def infer_board_size_from_model(self, model):
# Use the size of the act_fc1 layer to infer board dimensions
for name in model.keys():
if name == 'act_fc1.weight':
# Assuming the weight shape is [board_width * board_height, 4 * board_width * board_height]
c, _ = model[name].shape
print(f"act_fc1.weight shape: {model[name].shape}")
board_size = int(c ** 0.5) # Extracting board_width/height assuming they are the same
print(f"Board size inferred from model: {board_size}x{board_size}")
return board_size, board_size
return None
def apply_normal_bias(self, tensor, mean=0, std=1):
bsize = tensor.shape[0]
x, y = np.meshgrid(np.linspace(-1, 1, bsize), np.linspace(-1, 1, bsize))
d = np.sqrt(x * x + y * y)
sigma, mu = 1.0, 0.0
gauss = np.exp(-((d - mu) ** 2 / (2.0 * sigma ** 2)))
# Applying the bias only to non-zero elements
biased_tensor = tensor - (tensor != 0) * gauss
return biased_tensor
def policy_value(self, state_batch):
"""
input: a batch of states
output: a batch of action probabilities and state values
"""
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).to(self.device))
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.cpu().numpy())
return act_probs, value.data.cpu().numpy()
else:
state_batch = Variable(torch.FloatTensor(state_batch))
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.numpy())
return act_probs, value.data.numpy()
def policy_value_fn(self, board):
"""
input: board
output: a list of (action, probability) tuples for each available
action and the score of the board state
"""
legal_positions = board.availables
current_state = np.ascontiguousarray(board.current_state().reshape(
-1, 4, self.board_width, self.board_height))
if self.bias:
current_state[0][1] = self.apply_normal_bias(current_state[0][1])
if self.use_gpu:
log_act_probs, value = self.policy_value_net(
Variable(torch.from_numpy(current_state)).to(self.device).float())
act_probs = np.exp(log_act_probs.data.cpu().numpy().flatten())
else:
log_act_probs, value = self.policy_value_net(
Variable(torch.from_numpy(current_state)).float())
act_probs = np.exp(log_act_probs.data.numpy().flatten())
act_probs = zip(legal_positions, act_probs[legal_positions])
value = value.data[0][0]
return act_probs, value
def train_step(self, state_batch, mcts_probs, winner_batch, lr):
"""perform a training step"""
# self.use_gpu = True
# wrap in Variable
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).to(self.device))
mcts_probs = Variable(torch.FloatTensor(mcts_probs).to(self.device))
winner_batch = Variable(torch.FloatTensor(winner_batch).to(self.device))
else:
state_batch = Variable(torch.FloatTensor(state_batch))
mcts_probs = Variable(torch.FloatTensor(mcts_probs))
winner_batch = Variable(torch.FloatTensor(winner_batch))
# zero the parameter gradients
self.optimizer.zero_grad()
# set learning rate
set_learning_rate(self.optimizer, lr)
# forward
log_act_probs, value = self.policy_value_net(state_batch)
# define the loss = (z - v)^2 - pi^T * log(p) + c||theta||^2
# Note: the L2 penalty is incorporated in optimizer
value_loss = F.mse_loss(value.view(-1), winner_batch)
policy_loss = -torch.mean(torch.sum(mcts_probs * log_act_probs, 1))
loss = value_loss + policy_loss
# backward and optimize
loss.backward()
self.optimizer.step()
# calc policy entropy, for monitoring only
entropy = -torch.mean(
torch.sum(torch.exp(log_act_probs) * log_act_probs, 1)
)
# for pytorch version >= 0.5 please use the following line instead.
return loss.item(), entropy.item()
def get_policy_param(self):
net_params = self.policy_value_net.state_dict()
return net_params
def save_model(self, model_file):
""" save model params to file """
net_params = self.get_policy_param() # get model params
torch.save(net_params, model_file)
if __name__ == "__main__":
import torch
import torch.onnx
# 假设您的 Net 模型已经定义好了
model = Net(board_width=9, board_height=9) # 使用适当的参数初始化模型
dummy_input = torch.randn(1, 4, 9, 9) # 创建一个示例输入
# 将模型导出到 ONNX 格式
torch.onnx.export(model, dummy_input, "model.onnx", verbose=True)
|