Spaces:
Sleeping
Sleeping
File size: 20,818 Bytes
7d23b62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
from enum import Enum
import math
from .shape import shapes, get_shape_fast, is_five, is_four, get_all_shapes_of_point
from .position import coordinate2Position, isLine, isAllInLine, hasInLine, position2Coordinate
from .config import config
from datetime import datetime
import os
dir_path = os.path.dirname(os.path.abspath(__file__))
import numpy as np
import torch
# from .minimax_Net import BoardEvaluationNet as net
# mini_max_net = net(board_size=15)
# mini_max_net.load_state_dict(torch.load(os.path.join(dir_path, 'train_data/model', 'best_loss=609.3356355479785.pth')))
# mini_max_net.eval()
# Enum to represent different shapes
class Shapes(Enum):
FIVE = 0
BLOCK_FIVE = 1
FOUR = 2
FOUR_FOUR = 3
FOUR_THREE = 4
THREE_THREE = 5
BLOCK_FOUR = 6
THREE = 7
BLOCK_THREE = 8
TWO_TWO = 9
TWO = 10
NONE = 11
# Constants representing scores for each shape
FIVE = 10000000
BLOCK_FIVE = FIVE
FOUR = 100000
FOUR_FOUR = FOUR # 双冲四
FOUR_THREE = FOUR # 冲四活三
THREE_THREE = FOUR / 2 # 双活三
BLOCK_FOUR = 1500
THREE = 1000
BLOCK_THREE = 150
TWO_TWO = 200 # 双活二
TWO = 100
BLOCK_TWO = 15
ONE = 10
BLOCK_ONE = 1
# Function to calculate the real shape score based on the shape
def getRealShapeScore(shape: Shapes) -> int:
# Checked
if shape == shapes['FIVE']:
return FOUR
elif shape == shapes['BLOCK_FIVE']:
return BLOCK_FOUR
elif shape in [shapes['FOUR'], shapes['FOUR_FOUR'], shapes['FOUR_THREE']]:
return THREE
elif shape == shapes['BLOCK_FOUR']:
return BLOCK_THREE
elif shape == shapes['THREE']:
return TWO
elif shape == shapes['THREE_THREE']:
return math.floor(THREE_THREE / 10)
elif shape == shapes['BLOCK_THREE']:
return BLOCK_TWO
elif shape == shapes['TWO']:
return ONE
elif shape == shapes['TWO_TWO']:
return math.floor(TWO_TWO / 10)
else:
return 0
# List of all directions
allDirections = [
[0, 1], # Horizontal
[1, 0], # Vertical
[1, 1], # Diagonal \
[1, -1] # Diagonal /
]
# Function to get the index of a direction
def direction2index(ox: int, oy: int) -> int:
# Checked
if ox == 0:
return 0 # |
elif oy == 0:
return 1 # -
elif ox == oy:
return 2 # \
elif ox != oy:
return 3 # /
# Performance dictionary
performance = {
"updateTime": 0,
"getPointsTime": 0
}
class Evaluate:
def __init__(self, size=15):
# Checked
self.size = size
self.board = [[2] * (size + 2) for _ in range(size + 2)]
for i in range(size + 2):
for j in range(size + 2):
if i == 0 or j == 0 or i == self.size + 1 or j == self.size + 1:
self.board[i][j] = 2
else:
self.board[i][j] = 0
self.blackScores = [[0] * self.size for _ in range(size)]
self.whiteScores = [[0] * self.size for _ in range(size)]
self.initPoints()
self.history = [] # List of [position, role]
def move(self, x, y, role):
# Checked
# Clear the cache first
for d in [0, 1, 2, 3]:
self.shapeCache[role][d][x][y] = 0
self.shapeCache[-role][d][x][y] = 0
self.blackScores[x][y] = 0
self.whiteScores[x][y] = 0
# Update the board
self.board[x + 1][y + 1] = role ## Adjust for the added wall
self.updatePoint(x, y)
self.history.append([coordinate2Position(x, y, self.size), role])
def undo(self, x, y):
# Checked
self.board[x + 1][y + 1] = 0
self.updatePoint(x, y)
self.history.pop()
def initPoints(self):
# Checked
# Initialize the cache, avoid calculating the same points multiple times
self.shapeCache = {}
for role in [1, -1]:
self.shapeCache[role] = {}
for direction in [0, 1, 2, 3]:
self.shapeCache[role][direction] = [[0] * self.size for _ in range(self.size)]
self.pointsCache = {}
for role in [1, -1]:
self.pointsCache[role] = {}
for shape in shapes:
self.pointsCache[role][shape] = set()
def getPointsInLine(self, role):
# Checked
pointsInLine = {}
hasPointsInLine = False
for key in shapes:
pointsInLine[shapes[key]] = set()
last2Points = [position for position, role in self.history[-config['inlineCount']:]]
processed = {}
# 在last2Points中查找是否有点位在一条线上
for r in [role, -role]:
for point in last2Points:
x, y = position2Coordinate(point, self.size)
for ox, oy in allDirections:
for sign in [1, -1]:
for step in range(1, config['inLineDistance'] + 1):
nx = x + sign * step * ox
ny = y + sign * step * oy
position = coordinate2Position(nx, ny, self.size)
# 检测是否到达边界
if nx < 0 or nx >= self.size or ny < 0 or ny >= self.size:
break
if self.board[nx + 1][ny + 1] != 0:
continue
if processed.get(position) == r:
continue
processed[position] = r
for direction in [0, 1, 2, 3]:
shape = self.shapeCache[r][direction][nx][ny]
# 到达边界停止,但是注意到达对方棋子不能停止
if shape:
pointsInLine[shape].add(coordinate2Position(nx, ny, self.size))
hasPointsInLine = True
if hasPointsInLine:
return pointsInLine
return False
def getPoints(self, role, depth, vct, vcf):
first = role if depth % 2 == 0 else -role # 先手
start = datetime.now()
if config['onlyInLine'] and len(self.history) >= config['inlineCount']:
points_in_line = self.getPointsInLine(role)
if points_in_line:
performance['getPointsTime'] += (datetime.now() - start).total_seconds()
return points_in_line
points = {} # 全部点位
for key in shapes.keys():
points[shapes[key]] = set()
last_points = [position for position, _ in self.history[-4:]]
for r in [role, -role]:
# 这里是直接遍历了这个棋盘上的所有点位,如果棋盘很大,这里会有性能问题;可以用神经网络来预测
for i in range(self.size):
for j in range(self.size):
four_count = 0
block_four_count = 0
three_count = 0
for direction in [0, 1, 2, 3]:
if self.board[i + 1][j + 1] != 0:
continue
shape = self.shapeCache[r][direction][i][j]
if not shape:
continue
point = i * self.size + j
if vcf:
if r == first and not is_four(shape) and not is_five(shape):
continue
if r == -first and is_five(shape):
continue
if vct:
if depth % 2 == 0:
if depth == 0 and r != first:
continue
if shape != shapes['THREE'] and not is_four(shape) and not is_five(shape):
continue
if shape == shapes['THREE'] and r != first:
continue
if depth == 0 and r != first:
continue
if depth > 0:
if shape == shapes['THREE'] and len(
get_all_shapes_of_point(self.shapeCache, i, j, r)) == 1:
continue
if shape == shapes['BLOCK_FOUR'] and len(
get_all_shapes_of_point(self.shapeCache, i, j, r)) == 1:
continue
else:
if shape != shapes['THREE'] and not is_four(shape) and not is_five(shape):
continue
if shape == shapes['THREE'] and r == -first:
continue
if depth > 1:
if shape == shapes['BLOCK_FOUR'] and len(
get_all_shapes_of_point(self.shapeCache, i, j)) == 1:
continue
if shape == shapes['BLOCK_FOUR'] and not hasInLine(point, last_points, self.size):
continue
if vcf:
if not is_four(shape) and not is_five(shape):
continue
if depth > 2 and (shape == shapes['TWO'] or shape == shapes['TWO_TWO'] or shape == shapes[
'BLOCK_THREE']) and not hasInLine(point, last_points, self.size):
continue
points[shape].add(point)
if shape == shapes['FOUR']:
four_count += 1
elif shape == shapes['BLOCK_FOUR']:
block_four_count += 1
elif shape == shapes['THREE']:
three_count += 1
union_shape = None
if four_count >= 2:
union_shape = shapes['FOUR_FOUR']
elif block_four_count and three_count:
union_shape = shapes['FOUR_THREE']
elif three_count >= 2:
union_shape = shapes['THREE_THREE']
if union_shape:
points[union_shape].add(point)
performance['getPointsTime'] += (datetime.now() - start).total_seconds()
return points
"""
当一个位置发生变时候,要更新这个位置的四个方向上得分,更新规则是:
1. 如果这个位置是空的,那么就重新计算这个位置的得分
2. 如果碰到了边界或者对方的棋子,那么就停止计算
3. 如果超过2个空位,那么就停止计算
4. 要更新自己的和对方的得分
"""
def updatePoint(self, x, y):
# Checked
start = datetime.now()
self.updateSinglePoint(x, y, 1)
self.updateSinglePoint(x, y, -1)
for ox, oy in allDirections:
for sign in [1, -1]: # -1 for negative direction, 1 for positive direction
for step in range(1, 6):
reachEdge = False
for role in [1, -1]:
nx = x + sign * step * ox + 1 # +1 to adjust for wall
ny = y + sign * step * oy + 1 # +1 to adjust for wall
# Stop if wall or opponent's piece is found
if self.board[nx][ny] == 2:
reachEdge = True
break
elif self.board[nx][ny] == -role: # Change role if opponent's piece is found
continue
elif self.board[nx][ny] == 0:
self.updateSinglePoint(nx - 1, ny - 1, role,
[sign * ox, sign * oy]) # -1 to adjust back from wall
if reachEdge:
break
performance['updateTime'] += (datetime.now() - start).total_seconds()
"""
计算单个点的得分
计算原理是:
在当前位置放一个当前角色的棋子,遍历四个方向,生成四个方向上的字符串,用patters来匹配字符串, 匹配到的话,就将对应的得分加到scores上
四个方向的字符串生成规则是:向两边都延伸5个位置,如果遇到边界或者对方的棋子,就停止延伸
在更新周围棋子时,只有一个方向需要更新,因此可以传入direction参数,只更新一个方向
"""
def updateSinglePoint(self, x, y, role, direction=None):
# Checked
if self.board[x + 1][y + 1] != 0:
return # Not an empty spot
# Temporarily place the piece
self.board[x + 1][y + 1] = role
directions = []
if direction:
directions.append(direction)
else:
directions = allDirections
shapeCache = self.shapeCache[role]
# Clear the cache first
for ox, oy in directions:
shapeCache[direction2index(ox, oy)][x][y] = shapes['NONE']
score = 0
blockFourCount = 0
threeCount = 0
twoCount = 0
# Calculate existing score
for intDirection in [0, 1, 2, 3]:
shape = shapeCache[intDirection][x][y]
if shape > shapes['NONE']:
score += getRealShapeScore(shape)
if shape == shapes['BLOCK_FOUR']:
blockFourCount += 1
if shape == shapes['THREE']:
threeCount += 1
if shape == shapes['TWO']:
twoCount += 1
for ox, oy in directions:
intDirection = direction2index(ox, oy)
shape, selfCount = get_shape_fast(self.board, x, y, ox, oy, role)
if not shape:
continue
if shape:
# Note: Only cache single shapes, do not cache compound shapes like double threes, as they depend on two shapes
shapeCache[intDirection][x][y] = shape
if shape == shapes['BLOCK_FOUR']:
blockFourCount += 1
if shape == shapes['THREE']:
threeCount += 1
if shape == shapes['TWO']:
twoCount += 1
if blockFourCount >= 2:
shape = shapes['FOUR_FOUR']
elif blockFourCount and threeCount:
shape = shapes['FOUR_THREE']
elif threeCount >= 2:
shape = shapes['THREE_THREE']
elif twoCount >= 2:
shape = shapes['TWO_TWO']
score += getRealShapeScore(shape)
self.board[x + 1][y + 1] = 0 # Remove the temporary piece
if role == 1:
self.blackScores[x][y] = score
else:
self.whiteScores[x][y] = score
return score
def evaluate(self, role):
# Checked
blackScore = 0
whiteScore = 0
for i in range(len(self.blackScores)):
for j in range(len(self.blackScores[i])):
blackScore += self.blackScores[i][j]
for i in range(len(self.whiteScores)):
for j in range(len(self.whiteScores[i])):
whiteScore += self.whiteScores[i][j]
score = blackScore - whiteScore if role == 1 else whiteScore - blackScore
return score
def getMoves(self, role, depth, onThree=False, onlyFour=False, use_net = False):
# Checked
train_data = 0
if use_net and role == 1:
# value_move_num = 6
# input = torch.Tensor(np.array(self.board)[1:-1, 1:-1]).unsqueeze(0)
# scores = mini_max_net(input)
# flattened_scores = scores.flatten()
#
# moves = (flattened_scores.argsort(descending=True)[:value_move_num]).tolist()
moves = 0
# print(moves)
else:
moves, model_train_maxtrix = self._getMoves(role, depth, onThree, onlyFour)
train_data = {"state": np.array(self.board)[1:-1, 1:-1], "scores": model_train_maxtrix}
moves = [(move // self.size, move % self.size) for move in moves]
# cut the self.board into normal size
print("moves", moves)
return moves, train_data
def _getMoves(self, role, depth, only_three=False, only_four=False):
"""
Get possible moves based on the current game state.
"""
points = self.getPoints(role, depth, only_three, only_four)
fives = points[shapes['FIVE']]
block_fives = points[shapes['BLOCK_FIVE']]
# To train the model, we need to get all these points's score and store it to board size matrix
# Then we can use this matrix to train the model, given a state, we want it to output the score of each point, then we can choose the highest score point
model_train_matrix = [[0] * self.size for _ in range(self.size)]
if fives and len(fives) > 0 or block_fives and len(block_fives) > 0:
for point in fives:
x = point // self.size
y = point % self.size
for point in block_fives:
x = point // self.size
y = point % self.size
return set(list(fives) + list(block_fives)), model_train_matrix
fours = points[shapes['FOUR']]
block_fours = points[shapes['BLOCK_FOUR']] # Block four is special, consider it in both four and three
if only_four or (fours and len(fours) > 0):
for point in fours:
x = point // self.size
y = point % self.size
for point in block_fours:
x = point // self.size
y = point % self.size
return set(list(fours) + list(block_fours)), model_train_matrix
four_fours = points[shapes['FOUR_FOUR']]
if four_fours and len(four_fours) > 0:
for point in four_fours:
x = point // self.size
y = point % self.size
for point in block_fours:
x = point // self.size
y = point % self.size
return set(list(four_fours) + list(block_fours)), model_train_matrix
# Double threes and active threes
threes = points[shapes['THREE']]
four_threes = points[shapes['FOUR_THREE']]
if four_threes and len(four_threes) > 0:
for point in four_threes:
x = point // self.size
y = point % self.size
for point in block_fours:
x = point // self.size
y = point % self.size
for point in threes:
x = point // self.size
y = point % self.size
return set(list(four_threes) + list(block_fours) + list(threes)), model_train_matrix
three_threes = points[shapes['THREE_THREE']]
if three_threes and len(three_threes) > 0:
for point in three_threes:
x = point // self.size
y = point % self.size
for point in block_fours:
x = point // self.size
y = point % self.size
for point in threes:
x = point // self.size
y = point % self.size
return set(list(three_threes) + list(block_fours) + list(threes)), model_train_matrix
if only_three:
for point in threes:
x = point // self.size
y = point % self.size
for point in block_fours:
x = point // self.size
y = point % self.size
return set(list(block_fours) + list(threes)), model_train_matrix
block_threes = points[shapes['BLOCK_THREE']]
two_twos = points[shapes['TWO_TWO']]
twos = points[shapes['TWO']]
mid = list(block_fours) + list(threes) + list(block_threes) + list(two_twos) + list(twos)
res = set(mid[:5])
for i in range(len(model_train_matrix)):
for j in range(len(model_train_matrix)):
if (i * len(model_train_matrix) + j) not in res:
model_train_matrix[i][j] = 0
return res, model_train_matrix
|