File size: 27,276 Bytes
9e90422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8ff79
9e90422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8ff79
 
9e90422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
"""
FileName: app.py
Author: Benhao Huang
Create Date: 2023/11/19
Description: this file is used to display our project and add visualization elements to the game, using Streamlit
"""

import time
import pandas as pd
from copy import deepcopy
import numpy as np
import streamlit as st
from scipy.signal import convolve  # this is used to check if any player wins
from streamlit import session_state
from streamlit_server_state import server_state, server_state_lock
from Gomoku_MCTS import MCTSpure, alphazero, Board, PolicyValueNet_old, PolicyValueNet_new, duel_PolicyValueNet, \
    Gumbel_MCTSPlayer
from Gomoku_Bot import Gomoku_bot
from Gomoku_Bot import Board as Gomoku_bot_board

import matplotlib.pyplot as plt


from const import (
    _BLACK,  # 1
    _WHITE,  # 2
    _HUMAN,
    _AI,
    _BLANK,
    _PLAYER_NAME,
    _PLAYER_SYMBOL1,
    _PLAYER_SYMBOL2,
    _ROOM_COLOR,
    _VERTICAL,
    _NEW,
    _HORIZONTAL,
    _DIAGONAL_UP_LEFT,
    _DIAGONAL_UP_RIGHT,
    _BOARD_SIZE,
    _MODEL_PATH
)

_PLAYER_SYMBOL = [0, _PLAYER_SYMBOL1, _PLAYER_SYMBOL2]


if "FirstPlayer" not in session_state:
    session_state.FirstPlayer = _HUMAN
    session_state.Players = [ _BLACK,_WHITE]
    session_state.Symbols = _PLAYER_SYMBOL1

# Utils
class Room:
    def __init__(self, room_id) -> None:
        self.ROOM_ID = room_id
        self.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5, players=session_state.Players)
        self.TURN = _BLACK
        self.CURR_PLAYER = session_state.FirstPlayer
        self.HISTORY = (0, 0)
        self.WINNER = _BLANK
        self.TIME = time.time()
        self.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
        self.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
                          'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
                                                                    _MODEL_PATH["AlphaZero"]).policy_value_fn,
                                                 c_puct=5, n_playout=100),
                          'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
                                                                _MODEL_PATH["duel"]).policy_value_fn,
                                            c_puct=5, n_playout=100),
                          'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
                                                                                   _MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn,
                                                                c_puct=5, n_playout=100, m_action=8),
                          'Gomoku Bot': Gomoku_bot(self.gomoku_bot_board, -1)}
        self.MCTS = self.MCTS_dict['AlphaZero']
        self.last_mcts = self.MCTS
        self.AID_MCTS = self.MCTS_dict['AlphaZero']
        self.COORDINATE_1D = []
        self.current_move = -1
        self.ai_simula_time_list = []
        self.human_simula_time_list = []


def change_turn(cur):
    if cur in [_HUMAN, _AI]:
        return _HUMAN if cur == _AI else _AI
    return cur % 2 + 1


# Initialize the game
if "ROOM" not in session_state:
    session_state.ROOM = Room("local")
if "OWNER" not in session_state:
    session_state.OWNER = False
if "USE_AIAID" not in session_state:
    session_state.USE_AIAID = False

# Check server health
if "ROOMS" not in server_state:
    with server_state_lock["ROOMS"]:
        server_state.ROOMS = {}


def handle_oppo_model_selection():
    new_mct = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
    session_state.ROOM.MCTS = new_mct
    session_state.ROOM.last_mcts = new_mct
    session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5)
    session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
    session_state.ROOM.CURR_PLAYER = session_state.FirstPlayer
    session_state.ROOM.TURN = _BLACK
    session_state.ROOM.WINNER = _BLANK  # 0
    session_state.ROOM.ai_simula_time_list = []
    session_state.ROOM.human_simula_time_list = []
    session_state.ROOM.COORDINATE_1D = []
    return


def handle_aid_model_selection():
    if st.session_state['selected_aid_model'] == 'None':
        session_state.USE_AIAID = False
        return
    session_state.USE_AIAID = True
    TreeNode = session_state.ROOM.MCTS.mcts._root  # use the same tree node
    new_mct = session_state.ROOM.MCTS_dict[st.session_state['selected_aid_model']]
    new_mct.mcts._root = deepcopy(TreeNode)
    session_state.ROOM.AID_MCTS = new_mct
    return


if 'selected_oppo_model' not in st.session_state:
    st.session_state['selected_oppo_model'] = 'AlphaZero'  # ้ป˜่ฎคๅ€ผ

if 'selected_aid_model' not in st.session_state:
    st.session_state['selected_aid_model'] = 'AlphaZero'  # ้ป˜่ฎคๅ€ผ

# Layout
TITLE = st.empty()
Model_Switch = st.empty()

TITLE.header("๐Ÿค– AI 3603 Gomoku")
selected_oppo_option = Model_Switch.selectbox('Select Opponent Model',
                                              ['Pure MCTS', 'AlphaZero', 'Gomoku Bot', 'duel', 'Gumbel AlphaZero'],
                                              index=1, key='oppo_model')

if st.session_state['selected_oppo_model'] != selected_oppo_option:
    st.session_state['selected_oppo_model'] = selected_oppo_option
    handle_oppo_model_selection()

ROUND_INFO = st.empty()
st.markdown("<br>", unsafe_allow_html=True)
BOARD_PLATE = [
    [cell.empty() for cell in st.columns([1 for _ in range(_BOARD_SIZE)])] for _ in range(_BOARD_SIZE)
]
LOG = st.empty()

# Sidebar
SCORE_TAG = st.sidebar.empty()
SCORE_PLATE = st.sidebar.columns(2)
# History scores
SCORE_TAG.subheader("Scores")

PLAY_MODE_INFO = st.sidebar.container()
MULTIPLAYER_TAG = st.sidebar.empty()
with st.sidebar.container():
    ANOTHER_ROUND = st.empty()
    RESTART = st.empty()
    GIVEIN = st.empty()
    CHANGE_PLAYER = st.empty()
    AIAID = st.empty()
    EXIT = st.empty()
selected_aid_option = AIAID.selectbox('Select Assistant Model', ['None', 'Pure MCTS', 'AlphaZero'], index=0,
                                      key='aid_model')
if st.session_state['selected_aid_model'] != selected_aid_option:
    st.session_state['selected_aid_model'] = selected_aid_option
    handle_aid_model_selection()

GAME_INFO = st.sidebar.container()
message = st.empty()
PLAY_MODE_INFO.write("---\n\n**You are Black, AI agent is White.**")
GAME_INFO.markdown(
    """
    ---
    # <span style="color:black;">Freestyle Gomoku game. ๐ŸŽฒ</span>
    - FixedModel means you are not allowed to change model during a game
    - LeaderBoard is still in development
    - no restrictions ๐Ÿšซ
    - no regrets ๐Ÿ˜Ž
    Powered by an AlphaZero approach with our own improvements! ๐Ÿš€ For the specific details, please check out our <a href="insert_report_link_here" style="color:blue;">report</a>.
    ##### Adapted and improved by us! ๐ŸŒŸ  <a href="https://github.com/Lijiaxin0111/AI_3603_BIGHOME" style="color:blue;">Our Github repo</a>
    """,
    unsafe_allow_html=True,
)


def restart() -> None:
    """
    Restart the game.
    """
    session_state.ROOM = Room(session_state.ROOM.ROOM_ID)
    st.session_state['selected_oppo_model'] = 'AlphaZero'

def givein() -> None:
    """
    Give in to AI.
    """
    session_state.ROOM = deepcopy(session_state.ROOM)
    session_state.ROOM.WINNER = _AI
    # add 1 score to AI
    session_state.ROOM.HISTORY = (
        session_state.ROOM.HISTORY[0]
        + int(session_state.ROOM.WINNER == _AI),
        session_state.ROOM.HISTORY[1]
        + int(session_state.ROOM.WINNER == _HUMAN),
    )
    session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5)
    session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
    session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
                                    'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
                                                                              _MODEL_PATH["AlphaZero"]).policy_value_fn,
                                                           c_puct=5, n_playout=100),
                                    'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
                                                                          _MODEL_PATH["duel"]).policy_value_fn,
                                                      c_puct=5, n_playout=100),
                                    'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
                                                                                             _MODEL_PATH[
                                                                                                 "Gumbel AlphaZero"]).policy_value_fn,
                                                                          c_puct=5, n_playout=100, m_action=8),
                                    'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)}

    session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
    session_state.ROOM.last_mcts = session_state.ROOM.MCTS
    session_state.ROOM.TURN = _BLACK
    session_state.ROOM.CURR_PLAYER = session_state.FirstPlayer
    session_state.ROOM.WINNER = _BLANK  # 0
    session_state.ROOM.ai_simula_time_list = []
    session_state.ROOM.human_simula_time_list = []
    session_state.ROOM.COORDINATE_1D = []

def swap_players() -> None:
    session_state.update(
        FirstPlayer=change_turn(session_state.FirstPlayer),
    )
    """
    session_state.FirstPlayer = _HUMAN
    session_state.Players = [ _BLACK,_WHITE]
    session_state.Symbols = _PLAYER_SYMBOL1
    """

    session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5, players=session_state.Players)
    session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
    session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
                                    'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
                                                                              _MODEL_PATH["AlphaZero"]).policy_value_fn,
                                                           c_puct=5, n_playout=100),
                                    'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
                                                                          _MODEL_PATH["duel"]).policy_value_fn,
                                                      c_puct=5, n_playout=100),
                                    'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
                                                                                             _MODEL_PATH[
                                                                                                 "Gumbel AlphaZero"]).policy_value_fn,
                                                                          c_puct=5, n_playout=100, m_action=8),
                                    'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)}

    session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
    session_state.ROOM.last_mcts = session_state.ROOM.MCTS
    session_state.ROOM.TURN = _BLACK
    session_state.ROOM.CURR_PLAYER = session_state.FirstPlayer
    session_state.ROOM.WINNER = _BLANK  # 0
    session_state.ROOM.ai_simula_time_list = []
    session_state.ROOM.human_simula_time_list = []
    session_state.ROOM.COORDINATE_1D = []

RESTART.button(
    "Reset",
    on_click=restart,
    help="Clear the board as well as the scores",
)

GIVEIN.button(
    "Give in",
    on_click = givein,
    help="Give in to AI",
)

CHANGE_PLAYER.button(
    "Swap players",
    on_click=swap_players,
    help="Swap players",
)


# Draw the board
def gomoku():
    """
    Draw the board.
    Handle the main logic.
    """

    # Restart the game

    # Continue new round
    def another_round() -> None:
        """
        Continue new round.
        """
        session_state.ROOM = deepcopy(session_state.ROOM)
        session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5)
        session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
        session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
                                        'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
                                                                                  _MODEL_PATH["AlphaZero"]).policy_value_fn,
                                                               c_puct=5, n_playout=100),
                                        'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
                                                                              _MODEL_PATH["duel"]).policy_value_fn,
                                                          c_puct=5, n_playout=100),
                                        'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
                                                                                   _MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn,
                                                                c_puct=5, n_playout=100, m_action=8),
                                        'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)}

        session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
        session_state.ROOM.last_mcts = session_state.ROOM.MCTS
        session_state.ROOM.TURN = _BLACK
        session_state.ROOM.CURR_PLAYER = session_state.FirstPlayer
        session_state.ROOM.WINNER = _BLANK  # 0
        session_state.ROOM.ai_simula_time_list = []
        session_state.ROOM.human_simula_time_list = []
        session_state.ROOM.COORDINATE_1D = []

    # Room status sync
    def sync_room() -> bool:
        room_id = session_state.ROOM.ROOM_ID
        if room_id not in server_state.ROOMS.keys():
            session_state.ROOM = Room("local")
            return False
        elif server_state.ROOMS[room_id].TIME == session_state.ROOM.TIME:
            return False
        elif server_state.ROOMS[room_id].TIME < session_state.ROOM.TIME:
            # Only acquire the lock when writing to the server state
            with server_state_lock["ROOMS"]:
                server_rooms = server_state.ROOMS
                server_rooms[room_id] = session_state.ROOM
                server_state.ROOMS = server_rooms
            return True
        else:
            session_state.ROOM = server_state.ROOMS[room_id]
            return True

    # Triggers the board response on click
    def handle_click(x, y):
        """
        Controls whether to pass on / continue current board / may start new round
        """
        if session_state.ROOM.BOARD.board_map[x][y] != _BLANK:
            pass
        elif (
                session_state.ROOM.ROOM_ID in server_state.ROOMS.keys()
                and _ROOM_COLOR[session_state.OWNER]
                != server_state.ROOMS[session_state.ROOM.ROOM_ID].TURN
        ):
            sync_room()

        # normal play situation
        elif session_state.ROOM.WINNER == _BLANK:
            move = session_state.ROOM.BOARD.location_to_move((x, y))
            session_state.ROOM.current_move = move
            session_state.ROOM.BOARD.do_move(move)
            # Gomoku Bot BOARD
            session_state.ROOM.MCTS_dict["Gomoku Bot"].board.put(_BOARD_SIZE - move // _BOARD_SIZE - 1,
                                                                 move % _BOARD_SIZE)  # # this move starts from left up corner (0,0), however, the move in the game starts from left bottom corner (0,0)
            session_state.ROOM.BOARD.board_map[x][y] = session_state.ROOM.TURN
            session_state.ROOM.COORDINATE_1D.append(x * _BOARD_SIZE + y)

            session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN)
            session_state.ROOM.CURR_PLAYER = change_turn(session_state.ROOM.CURR_PLAYER)
            win, winner = session_state.ROOM.BOARD.game_end()
            if win:
                session_state.ROOM.WINNER = session_state.ROOM.CURR_PLAYER
            session_state.ROOM.HISTORY = (
                session_state.ROOM.HISTORY[0]
                + int(session_state.ROOM.WINNER == _AI),
                session_state.ROOM.HISTORY[1]
                + int(session_state.ROOM.WINNER == _HUMAN),
            )
            session_state.ROOM.TIME = time.time()

    def forbid_click(x, y):
        # st.warning('This posistion has been occupied!!!!', icon="โš ๏ธ")
        st.error("({}, {}) has been occupied!!)".format(x, y), icon="๐Ÿšจ")

    # Draw board
    def draw_board(response: bool):
        """construct each buttons for all cells of the board"""
        if session_state.USE_AIAID and session_state.ROOM.WINNER == _BLANK and session_state.ROOM.CURR_PLAYER == _HUMAN:
            if session_state.USE_AIAID:
                copy_mcts = deepcopy(session_state.ROOM.AID_MCTS.mcts)
                _, acts_aid, probs_aid, simul_mean_time_aid = copy_mcts.get_move_probs(session_state.ROOM.BOARD)
                sorted_acts_probs = sorted(zip(acts_aid, probs_aid), key=lambda x: x[1], reverse=True)
                top_five_acts = [act for act, prob in sorted_acts_probs[:5]]
                top_five_probs = [prob for act, prob in sorted_acts_probs[:5]]
        if response and session_state.ROOM.CURR_PLAYER == _HUMAN:  # human turn
            start_time = time.time()
            print("Your turn")
            # construction of clickable buttons
            cur_move = (session_state.ROOM.current_move // _BOARD_SIZE, session_state.ROOM.current_move % _BOARD_SIZE)
            for i, row in enumerate(session_state.ROOM.BOARD.board_map):
                for j, cell in enumerate(row):
                    if (
                            i * _BOARD_SIZE + j
                            in (session_state.ROOM.COORDINATE_1D)
                    ):
                        if i == cur_move[0] and j == cur_move[1]:
                            BOARD_PLATE[i][j].button(
                                session_state.Symbols[_NEW],
                                key=f"{i}:{j}",
                                args=(i, j),
                                on_click=forbid_click,
                            )
                        else:
                            # disable click for GPT choices
                            BOARD_PLATE[i][j].button(
                                session_state.Symbols[cell],
                                key=f"{i}:{j}",
                                args=(i, j),
                                on_click=forbid_click
                            )
                    else:
                        if session_state.USE_AIAID and i * _BOARD_SIZE + j in top_five_acts:
                            # enable click for other cells available for human choices
                            prob = top_five_probs[top_five_acts.index(i * _BOARD_SIZE + j)]
                            BOARD_PLATE[i][j].button(
                                session_state.Symbols[cell] + f"{round(prob, 2)}",
                                key=f"{i}:{j}",
                                on_click=handle_click,
                                args=(i, j),
                            )
                        else:
                            # enable click for other cells available for human choices
                            BOARD_PLATE[i][j].button(
                                session_state.Symbols[cell],
                                key=f"{i}:{j}",
                                on_click=handle_click,
                                args=(i, j),
                            )
            end_time = time.time()
            print("Time used for human move: ", end_time - start_time)

        elif response and session_state.ROOM.CURR_PLAYER == _AI:  # AI turn
            message.empty()
            with st.spinner('๐Ÿ”ฎโœจ Waiting for AI response... โณ๐Ÿš€'):
                time.sleep(0.05)
                print("AI's turn")
                
                if st.session_state['selected_oppo_model'] != 'Gomoku Bot':
                    move, simul_time = session_state.ROOM.MCTS.get_action(session_state.ROOM.BOARD, return_time=True)
                else:
                    move, simul_time = session_state.ROOM.MCTS.get_action(return_time=True)
                session_state.ROOM.ai_simula_time_list.append(simul_time)
                print("AI takes move: ", move)
                session_state.ROOM.current_move = move
                gpt_response = move
                gpt_i, gpt_j = gpt_response // _BOARD_SIZE, gpt_response % _BOARD_SIZE
                print("AI's move is located at ({}, {}) :".format(gpt_i, gpt_j))
                move = session_state.ROOM.BOARD.location_to_move((gpt_i, gpt_j))
                print("Location to move: ", move)
                # MCTS BOARD
                session_state.ROOM.BOARD.do_move(move)
                # Gomoku Bot BOARD
                session_state.ROOM.MCTS_dict["Gomoku Bot"].board.put(_BOARD_SIZE - 1 - move // _BOARD_SIZE,
                                                                     move % _BOARD_SIZE)
                session_state.ROOM.COORDINATE_1D.append(gpt_i * _BOARD_SIZE + gpt_j)

                if not session_state.ROOM.BOARD.game_end()[0]:
                    if session_state.USE_AIAID:
                        copy_mcts = deepcopy(session_state.ROOM.AID_MCTS.mcts)
                        _, acts_aid, probs_aid, simul_mean_time_aid = copy_mcts.get_move_probs(session_state.ROOM.BOARD)
                        sorted_acts_probs = sorted(zip(acts_aid, probs_aid), key=lambda x: x[1], reverse=True)
                        top_five_acts = [act for act, prob in sorted_acts_probs[:5]]
                        top_five_probs = [prob for act, prob in sorted_acts_probs[:5]]
                else:
                    top_five_acts = []
                    top_five_probs = []

                # construction of clickable buttons
                for i, row in enumerate(session_state.ROOM.BOARD.board_map):
                    # print("row:", row)
                    for j, cell in enumerate(row):
                        if (
                                i * _BOARD_SIZE + j
                                in (session_state.ROOM.COORDINATE_1D)
                        ):
                            if i == gpt_i and j == gpt_j:
                                BOARD_PLATE[i][j].button(
                                    session_state.Symbols[_NEW],
                                    key=f"{i}:{j}",
                                    args=(i, j),
                                    on_click=handle_click,
                                )
                            else:
                                # disable click for GPT choices
                                BOARD_PLATE[i][j].button(
                                    session_state.Symbols[cell],
                                    key=f"{i}:{j}",
                                    args=(i, j),
                                    on_click=forbid_click
                                )
                        else:
                            if session_state.USE_AIAID and i * _BOARD_SIZE + j in top_five_acts and not \
                                    session_state.ROOM.BOARD.game_end()[0]:
                                # enable click for other cells available for human choices
                                prob = top_five_probs[top_five_acts.index(i * _BOARD_SIZE + j)]
                                BOARD_PLATE[i][j].button(
                                    session_state.Symbols[cell] + f"{round(prob, 2)}",
                                    key=f"{i}:{j}",
                                    on_click=handle_click,
                                    args=(i, j),
                                )
                            else:
                                # enable click for other cells available for human choices
                                BOARD_PLATE[i][j].button(
                                    session_state.Symbols[cell],
                                    key=f"{i}:{j}",
                                    on_click=handle_click,
                                    args=(i, j),
                                )

            message.markdown(
                'AI agent has calculated its strategy, which takes <span style="color: blue; font-size: 20px;">{:.3e}</span>s per simulation.'.format(
                    simul_time),
                unsafe_allow_html=True
            )
            LOG.subheader("Logs")
            # change turn
            session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN)
            session_state.ROOM.CURR_PLAYER = change_turn(session_state.ROOM.CURR_PLAYER)

            win, winner = session_state.ROOM.BOARD.game_end()
            if win:
                session_state.ROOM.WINNER = session_state.ROOM.CURR_PLAYER

            session_state.ROOM.HISTORY = (
                session_state.ROOM.HISTORY[0]
                + int(session_state.ROOM.WINNER == _AI),
                session_state.ROOM.HISTORY[1]
                + int(session_state.ROOM.WINNER == _HUMAN),
            )
            session_state.ROOM.TIME = time.time()

        if not response or session_state.ROOM.WINNER != _BLANK:
            if session_state.ROOM.WINNER != _BLANK:
                print("Game over")
            for i, row in enumerate(session_state.ROOM.BOARD.board_map):
                for j, cell in enumerate(row):
                    BOARD_PLATE[i][j].write(
                        session_state.Symbols[cell],
                        # key=f"{i}:{j}",
                    )

    # Game process control
    def game_control():
        if session_state.ROOM.WINNER != _BLANK:
            draw_board(False)
        else:
            draw_board(True)
        if session_state.ROOM.WINNER != _BLANK or 0 not in session_state.ROOM.BOARD.board_map:
            GIVEIN.empty()
            ANOTHER_ROUND.button(
                "Play Next round!",
                on_click=another_round,
                help="Clear board and swap first player",
            )

    # Infos
    def update_info() -> None:
        # Additional information
        SCORE_PLATE[0].metric("Gomoku-Agent", session_state.ROOM.HISTORY[0])
        SCORE_PLATE[1].metric("You", session_state.ROOM.HISTORY[1])
        if session_state.ROOM.WINNER != _BLANK:
            st.balloons()
            ROUND_INFO.write(
                f"#### **{_PLAYER_NAME[session_state.ROOM.WINNER]} WIN!**\n**Click buttons on the left for more plays.**"
            )

        st.markdown("<br>", unsafe_allow_html=True)
        st.markdown("<br>", unsafe_allow_html=True)
        chart_data = pd.DataFrame(session_state.ROOM.ai_simula_time_list, columns=["Simulation Time"])
        st.line_chart(chart_data)

    game_control()
    update_info()


if __name__ == "__main__":
    gomoku()