Demo / Gomoku_Bot /board.py
HuskyDoge's picture
added gomokubot
7d23b62
raw
history blame
7.77 kB
from .zobrist import ZobristCache as Zobrist
from .cache import Cache
from .eval import Evaluate, FIVE
from scipy import signal
import pickle
import os
save_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'train_data/data', 'train_data.pkl')
if 'numpy' not in globals():
import numpy as np
class Board:
def __init__(self, size=15, firstRole=1):
self.size = size
self.board = [[0] * self.size for _ in range(self.size)]
self.firstRole = firstRole # 1 for black, -1 for white
self.role = firstRole # 1 for black, -1 for white
self.history = []
self.zobrist = Zobrist(self.size)
self.winnerCache = Cache()
self.gameoverCache = Cache()
self.evaluateCache = Cache()
self.valuableMovesCache = Cache()
self.evaluateTime = 0
self.evaluator = Evaluate(self.size)
self.available = [(i, j) for i in range(self.size) for j in range(self.size)]
self.patterns = [np.ones((1, 5)), np.ones((5, 1)), np.eye(5), np.fliplr(np.eye(5))]
self.train_data = {1:[], -1: []}
if os.path.exists(save_path):
with open(save_path, 'rb') as f:
self.train_data = pickle.load(f)
def isGameOver(self):
# Checked
hash = self.hash()
if self.gameoverCache.get(hash):
return self.gameoverCache.get(hash)
if self.getWinner() != 0:
self.gameoverCache.put(hash, True)
# save train data
# with open(save_path, 'wb') as f:
# pickle.dump(self.train_data, f)
return True # Someone has won
# Game is over when there is no empty space on the board or someone has won
if len(self.history) == self.size ** 2:
self.gameoverCache.put(hash, True)
return True
else:
self.gameoverCache.put(hash, False)
return False
def getWinner(self):
# Checked
hash = self.hash()
flag = True
if self.winnerCache.get(hash):
return self.winnerCache.get(hash)
directions = [[1, 0], [0, 1], [1, 1], [1, -1]] # Horizontal, Vertical, Diagonal
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] == 0:
flag = False
continue
for direction in directions:
count = 0
while (
0 <= i + direction[0] * count < self.size and
0 <= j + direction[1] * count < self.size and
self.board[i + direction[0] * count][j + direction[1] * count] == self.board[i][j]
):
count += 1
if count >= 5:
self.winnerCache.put(hash, self.board[i][j])
return self.board[i][j]
if flag:
print("tie!!!")
return 0
self.winnerCache.put(hash, 0)
return 0
def getValidMoves(self):
return self.available
def put(self, i, j, role=None):
# Checked
if role is None:
role = self.role
if not isinstance(i, int) or not isinstance(j, int):
print("Invalid move: Not Number!", i, j)
return False
if self.board[i][j] != 0:
print("Invalid move!", i, j)
return False
self.board[i][j] = role
self.available.remove((i, j))
self.history.append({"i": i, "j": j, "role": role})
self.zobrist.togglePiece(i, j, role)
self.evaluator.move(i, j, role)
self.role *= -1 # Switch role
return True
def undo(self):
# Checked
if len(self.history) == 0:
print("No moves to undo!")
return False
lastMove = self.history.pop()
self.board[lastMove['i']][lastMove['j']] = 0 # Remove the piece from the board
self.role = lastMove['role'] # Switch back to the previous player
self.zobrist.togglePiece(lastMove['i'], lastMove['j'], lastMove['role'])
self.evaluator.undo(lastMove['i'], lastMove['j'])
self.available.append((lastMove['i'], lastMove['j']))
return True
def position2coordinate(self, position):
# checked
row = position // self.size
col = position % self.size
return [row, col]
def coordinate2position(self, coordinate):
# Checked
return coordinate[0] * self.size + coordinate[1]
def getValuableMoves(self, role, depth=0, onlyThree=False, onlyFour=False):
# Checked
hash = self.hash()
prev = self.valuableMovesCache.get(hash)
if prev:
if (prev["role"] == role and
prev["depth"] == depth and
prev["onlyThree"] == onlyThree
and prev["onlyFour"] == onlyFour):
return prev["moves"]
moves, train_data = self.evaluator.getMoves(role, depth, onlyThree, onlyFour)
self.train_data[self.role].append(train_data)
# Handle a special case, if the center point is not occupied, add it by default
# 开局的时候随机走一步,增加开局的多样性
if not onlyThree and not onlyFour:
center = self.size // 2
if self.board[center][center] == 0:
moves.append((center, center))
# x_step = np.random.randint(-self.size // 2, self.size // 2)
# y_step = np.random.randint(-self.size // 2, self.size // 2)
# x = center + x_step
# y = center + y_step
# if 0 <= x < self.size and 0 <= y < self.size and self.board[x][y] == 0:
# moves.append((x, y))
self.valuableMovesCache.put(hash, {
"role": role,
"moves": moves,
"depth": depth,
"onlyThree": onlyThree,
"onlyFour": onlyFour
})
return moves
def display(self, extraPoints=[]):
# Checked
extraPosition = [self.coordinate2position(point) for point in extraPoints]
result = ""
for i in range(self.size):
for j in range(self.size):
position = self.coordinate2position([i, j])
if position in extraPosition:
result += "? "
continue
value = self.board[i][j]
if value == 1:
result += "B " # Black
elif value == -1:
result += "W " # White
else:
result += "- "
result += "\n"
return result
def hash(self):
# Checked
return self.zobrist.getHash() # Return the hash value of the current board, used for caching
def evaluate(self, role):
# Checked
hash_key = self.hash()
prev = self.evaluateCache.get(hash_key)
if prev:
if prev["role"] == role:
return prev["score"]
winner = self.getWinner()
score = 0
if winner != 0:
score = FIVE * winner * role
else:
score = self.evaluator.evaluate(role)
self.evaluateCache.put(hash_key, {"role": role, "score": score})
return score
def reverse(self):
# Checked
new_board = Board(self.size, -self.firstRole)
for move in self.history:
x, y, role = move['i'], move['j'], move['role']
new_board.put(x, y, -role)
return new_board
def toString(self):
# Checked
return ''.join([''.join(map(str, row)) for row in self.board])