Demo / Gomoku_MCTS /policy_value_net_pytorch_new.py
HuskyDoge's picture
AI VS AI bugs
d97a106
raw
history blame
9.37 kB
# -*- coding: utf-8 -*-
"""
An implementation of the policyValueNet in PyTorch
Tested in PyTorch 0.2.0 and 0.3.0
@author: Junxiao Song
"""
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def set_learning_rate(optimizer, lr):
"""Sets the learning rate to the given value"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
def forward(self, x):
residual = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += residual
return F.relu(out)
class Net(nn.Module):
"""Policy-Value network module for AlphaZero Gomoku."""
def __init__(self, board_width, board_height, num_residual_blocks=5):
super(Net, self).__init__()
self.board_width = board_width
self.board_height = board_height
self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.res_layers = nn.Sequential(*[ResidualBlock(32) for _ in range(num_residual_blocks)])
# Action Policy layers
self.act_conv1 = nn.Conv2d(32, 4, kernel_size=1)
self.act_fc1 = nn.Linear(4 * board_width * board_height, board_width * board_height)
# State Value layers
self.val_conv1 = nn.Conv2d(32, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2 * board_width * board_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.res_layers(x)
# Action Policy head
x_act = F.relu(self.act_conv1(x))
x_act = x_act.view(-1, 4 * self.board_width * self.board_height)
x_act = F.log_softmax(self.act_fc1(x_act), dim=1)
# State Value head
x_val = F.relu(self.val_conv1(x))
x_val = x_val.view(-1, 2 * self.board_width * self.board_height)
x_val = F.relu(self.val_fc1(x_val))
x_val = torch.tanh(self.val_fc2(x_val))
return x_act, x_val
class PolicyValueNet():
"""policy-value network """
def __init__(self, board_width, board_height,
model_file=None, use_gpu=False, bias=False):
self.device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
self.use_gpu = use_gpu
self.l2_const = 1e-4 # coef of l2 penalty
self.board_width = board_width
self.board_height = board_height
self.bias = bias
if model_file:
net_params = torch.load(model_file, map_location='cpu' if not use_gpu else None)
# Infer board dimensions from the loaded model
inferred_width, inferred_height = self.infer_board_size_from_model(net_params)
if inferred_width and inferred_height:
self.policy_value_net = Net(inferred_width, inferred_height).to(self.device) if use_gpu else Net(
inferred_width, inferred_height)
self.policy_value_net.load_state_dict(net_params)
print("Use model file to initialize the policy value net")
else:
raise Exception("The model file does not contain the board dimensions")
if inferred_width < board_width:
self.use_conv = True
elif inferred_width > board_width:
raise Exception("The model file has a larger board size than the current board size!!")
else:
# the policy value net module
if self.use_gpu:
self.policy_value_net = Net(board_width, board_height).to(self.device)
else:
self.policy_value_net = Net(board_width, board_height)
self.optimizer = optim.Adam(self.policy_value_net.parameters(),
weight_decay=self.l2_const)
def infer_board_size_from_model(self, model):
# Use the size of the act_fc1 layer to infer board dimensions
for name in model.keys():
if name == 'act_fc1.weight':
# Assuming the weight shape is [board_width * board_height, 4 * board_width * board_height]
c, _ = model[name].shape
print(f"act_fc1.weight shape: {model[name].shape}")
board_size = int(c ** 0.5) # Extracting board_width/height assuming they are the same
print(f"Board size inferred from model: {board_size}x{board_size}")
return board_size, board_size
return None
def apply_normal_bias(self, tensor, mean=0, std=1):
bsize = tensor.shape[0]
x, y = np.meshgrid(np.linspace(-1, 1, bsize), np.linspace(-1, 1, bsize))
d = np.sqrt(x * x + y * y)
sigma, mu = 1.0, 0.0
gauss = np.exp(-((d - mu) ** 2 / (2.0 * sigma ** 2)))
# Applying the bias only to non-zero elements
biased_tensor = tensor - (tensor != 0) * gauss
return biased_tensor
def policy_value(self, state_batch):
"""
input: a batch of states
output: a batch of action probabilities and state values
"""
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).to(self.device))
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.cpu().numpy())
return act_probs, value.data.cpu().numpy()
else:
state_batch = Variable(torch.FloatTensor(state_batch))
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.numpy())
return act_probs, value.data.numpy()
def policy_value_fn(self, board):
"""
input: board
output: a list of (action, probability) tuples for each available
action and the score of the board state
"""
legal_positions = board.availables
current_state = np.ascontiguousarray(board.current_state().reshape(
-1, 4, self.board_width, self.board_height))
if self.bias:
current_state[0][1] = self.apply_normal_bias(current_state[0][1])
if self.use_gpu:
log_act_probs, value = self.policy_value_net(
Variable(torch.from_numpy(current_state)).to(self.device).float())
act_probs = np.exp(log_act_probs.data.cpu().numpy().flatten())
else:
log_act_probs, value = self.policy_value_net(
Variable(torch.from_numpy(current_state)).float())
act_probs = np.exp(log_act_probs.data.numpy().flatten())
act_probs = zip(legal_positions, act_probs[legal_positions])
value = value.data[0][0]
return act_probs, value
def train_step(self, state_batch, mcts_probs, winner_batch, lr):
"""perform a training step"""
# self.use_gpu = True
# wrap in Variable
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).to(self.device))
mcts_probs = Variable(torch.FloatTensor(mcts_probs).to(self.device))
winner_batch = Variable(torch.FloatTensor(winner_batch).to(self.device))
else:
state_batch = Variable(torch.FloatTensor(state_batch))
mcts_probs = Variable(torch.FloatTensor(mcts_probs))
winner_batch = Variable(torch.FloatTensor(winner_batch))
# zero the parameter gradients
self.optimizer.zero_grad()
# set learning rate
set_learning_rate(self.optimizer, lr)
# forward
log_act_probs, value = self.policy_value_net(state_batch)
# define the loss = (z - v)^2 - pi^T * log(p) + c||theta||^2
# Note: the L2 penalty is incorporated in optimizer
value_loss = F.mse_loss(value.view(-1), winner_batch)
policy_loss = -torch.mean(torch.sum(mcts_probs * log_act_probs, 1))
loss = value_loss + policy_loss
# backward and optimize
loss.backward()
self.optimizer.step()
# calc policy entropy, for monitoring only
entropy = -torch.mean(
torch.sum(torch.exp(log_act_probs) * log_act_probs, 1)
)
# for pytorch version >= 0.5 please use the following line instead.
return loss.item(), entropy.item()
def get_policy_param(self):
net_params = self.policy_value_net.state_dict()
return net_params
def save_model(self, model_file):
""" save model params to file """
net_params = self.get_policy_param() # get model params
torch.save(net_params, model_file)
if __name__ == "__main__":
import torch
import torch.onnx
# 假设您的 Net 模型已经定义好了
model = Net(board_width=9, board_height=9) # 使用适当的参数初始化模型
dummy_input = torch.randn(1, 4, 9, 9) # 创建一个示例输入
# 将模型导出到 ONNX 格式
torch.onnx.export(model, dummy_input, "model.onnx", verbose=True)