Demo / pages /AI_VS_AI.py
HuskyDoge's picture
fixed some bugs
6b8ff79
raw
history blame
31.4 kB
"""
FileName: app.py
Author: Benhao Huang
Create Date: 2023/11/19
Description: this file is used to display our project and add visualization elements to the game, using Streamlit
"""
import time
import pandas as pd
from copy import deepcopy
import numpy as np
import streamlit as st
from scipy.signal import convolve # this is used to check if any player wins
from streamlit import session_state
from streamlit_server_state import server_state, server_state_lock
from Gomoku_MCTS import MCTSpure, alphazero, Board, PolicyValueNet_old, PolicyValueNet_new, duel_PolicyValueNet, \
Gumbel_MCTSPlayer
from Gomoku_Bot import Gomoku_bot
from Gomoku_Bot import Board as Gomoku_bot_board
import matplotlib.pyplot as plt
# refresh session state when changing pages
from const import (
_BLACK, # 1, for human
_WHITE, # 2 , for AI
_BLANK,
_PLAYER_COLOR_AI_VS_AI,
_PLAYER_SYMBOL1,
_PLAYER_SYMBOL2,
_ROOM_COLOR,
_VERTICAL,
_NEW,
_HORIZONTAL,
_DIAGONAL_UP_LEFT,
_DIAGONAL_UP_RIGHT,
_BOARD_SIZE,
_MODEL_PATH
)
_PLAYER_SYMBOL = [0, _PLAYER_SYMBOL1, _PLAYER_SYMBOL2]
# '''
# from ai import (
# BOS_TOKEN_ID,
# generate_gpt2,
# load_model,
# )
#
# gpt2 = load_model()
#
# '''
if "FirstPlayer" not in session_state:
session_state.FirstPlayer = _BLACK
session_state.Player = [[], [ _BLACK,_WHITE], [_WHITE,_BLACK]][session_state.FirstPlayer]
session_state.Symbol = _PLAYER_SYMBOL[session_state.FirstPlayer]
# Utils
class Room:
def __init__(self, room_id) -> None:
self.ROOM_ID = room_id
# self.BOARD = np.zeros(shape=(_BOARD_SIZE, _BOARD_SIZE), dtype=int)
self.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5, players=session_state.Player)
self.PLAYER = session_state.FirstPlayer
self.TURN = self.PLAYER
self.HISTORY = (0, 0)
self.WINNER = _BLANK
self.TIME = time.time()
self.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
self.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100),
'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["duel"]).policy_value_fn,
c_puct=5, n_playout=100),
'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100, m_action=8),
'Gomoku Bot': Gomoku_bot(self.gomoku_bot_board, -1)}
self.MCTS_dict_ = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100),
'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["duel"]).policy_value_fn,
c_puct=5, n_playout=100),
'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100, m_action=8),
'Gomoku Bot': Gomoku_bot(self.gomoku_bot_board, -1)}
self.MCTS = self.MCTS_dict['AlphaZero']
self.MCTS_ = self.MCTS_dict['AlphaZero']
self.last_mcts = self.MCTS
self.AID_MCTS = self.MCTS_dict['AlphaZero']
self.COORDINATE_1D = []
self.current_move = -1
self.ai_simula_time_list = []
self.ai_simula_time_list_ = []
self.human_simula_time_list = []
def change_turn(cur):
return cur % 2 + 1
# Initialize the game
if "ROOM" not in session_state:
session_state.ROOM = Room("local")
if "OWNER" not in session_state:
session_state.OWNER = False
if "USE_AIAID" not in session_state:
session_state.USE_AIAID = False
# Check server health
if "ROOMS" not in server_state:
with server_state_lock["ROOMS"]:
server_state.ROOMS = {}
def handle_oppo_model_selection():
if st.session_state['selected_oppo_model'] == 'Gomoku Bot':
session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict['Gomoku Bot']
return
else:
TreeNode = session_state.ROOM.last_mcts.mcts._root
new_mct = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
new_mct.mcts._root = deepcopy(TreeNode)
session_state.ROOM.MCTS = new_mct
session_state.ROOM.last_mcts = new_mct
return
def handle_oppo_model_selection_():
if st.session_state['selected_oppo_model_'] == 'Gomoku Bot':
session_state.ROOM.MCTS_ = session_state.ROOM.MCTS_dict_['Gomoku Bot']
return
else:
TreeNode = session_state.ROOM.last_mcts_.mcts._root
new_mct = session_state.ROOM.MCTS_dict_[st.session_state['selected_oppo_model_']]
new_mct.mcts._root = deepcopy(TreeNode)
session_state.ROOM.MCTS_ = new_mct
session_state.ROOM.last_mcts_ = new_mct
return
def handle_aid_model_selection():
if st.session_state['selected_aid_model'] == 'None':
session_state.USE_AIAID = False
return
session_state.USE_AIAID = True
TreeNode = session_state.ROOM.MCTS.mcts._root # use the same tree node
new_mct = session_state.ROOM.MCTS_dict[st.session_state['selected_aid_model']]
new_mct.mcts._root = deepcopy(TreeNode)
session_state.ROOM.AID_MCTS = new_mct
return
if 'selected_oppo_model' not in st.session_state:
st.session_state['selected_oppo_model'] = 'AlphaZero' # 默认值
if 'selected_oppo_model_' not in st.session_state:
st.session_state['selected_oppo_model_'] = 'AlphaZero' # 默认值
if 'selected_aid_model' not in st.session_state:
st.session_state['selected_aid_model'] = 'AlphaZero' # 默认值
# Layout
TITLE = st.empty()
Model_Switch = st.empty()
Model_Switch_ = st.empty()
TITLE.header("🤖 AI 3603 Gomoku")
selected_oppo_option = Model_Switch.selectbox('Select Model 1',
['Pure MCTS', 'AlphaZero', 'Gomoku Bot', 'duel', 'Gumbel AlphaZero'],
index=1, key='oppo_model')
selected_oppo_option_ = Model_Switch_.selectbox('Select Model 2',
['Pure MCTS', 'AlphaZero', 'Gomoku Bot', 'duel', 'Gumbel AlphaZero'],
index=1, key='oppo_model_')
if st.session_state['selected_oppo_model'] != selected_oppo_option:
st.session_state['selected_oppo_model'] = selected_oppo_option
handle_oppo_model_selection()
if st.session_state['selected_oppo_model_'] != selected_oppo_option_:
st.session_state['selected_oppo_model_'] = selected_oppo_option_
handle_oppo_model_selection_()
ROUND_INFO = st.empty()
st.markdown("<br>", unsafe_allow_html=True)
BOARD_PLATE = [
[cell.empty() for cell in st.columns([1 for _ in range(_BOARD_SIZE)])] for _ in range(_BOARD_SIZE)
]
LOG = st.empty()
# Sidebar
SCORE_TAG = st.sidebar.empty()
SCORE_PLATE = st.sidebar.columns(2)
# History scores
SCORE_TAG.subheader("Scores")
PLAY_MODE_INFO = st.sidebar.container()
MULTIPLAYER_TAG = st.sidebar.empty()
with st.sidebar.container():
ANOTHER_ROUND = st.empty()
RESTART = st.empty()
CHANGE_PLAYER = st.empty()
AIAID = st.empty()
EXIT = st.empty()
selected_aid_option = AIAID.selectbox('Select Assistant Model', ['None', 'Pure MCTS', 'AlphaZero'], index=0,
key='aid_model')
if st.session_state['selected_aid_model'] != selected_aid_option:
st.session_state['selected_aid_model'] = selected_aid_option
handle_aid_model_selection()
GAME_INFO = st.sidebar.container()
message = st.empty()
PLAY_MODE_INFO.write("---\n\n**You are Black, AI agent is White.**")
GAME_INFO.markdown(
"""
---
# <span style="color:black;">Freestyle Gomoku game. 🎲</span>
- FixedModel means you are not allowed to change model during a game
- LeaderBoard is still in development
- no restrictions 🚫
- no regrets 😎
Powered by an AlphaZero approach with our own improvements! 🚀 For the specific details, please check out our <a href="insert_report_link_here" style="color:blue;">report</a>.
##### Adapted and improved by us! 🌟 <a href="https://github.com/Lijiaxin0111/AI_3603_BIGHOME" style="color:blue;">Our Github repo</a>
""",
unsafe_allow_html=True,
)
def restart() -> None:
"""
Restart the game.
"""
session_state.ROOM = Room(session_state.ROOM.ROOM_ID)
st.session_state['selected_oppo_model'] = 'AlphaZero'
def swap_players() -> None:
session_state.update(
FirstPlayer=change_turn(session_state.FirstPlayer),
)
session_state.update(
Player=[[], [_BLACK, _WHITE], [_WHITE, _BLACK]][session_state.FirstPlayer],
Symbol=_PLAYER_SYMBOL[session_state.FirstPlayer]
)
session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5, players=session_state.Player)
session_state.ROOM.PLAYER = session_state.FirstPlayer
session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100),
'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["duel"]).policy_value_fn,
c_puct=5, n_playout=100),
'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH[
"Gumbel AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100, m_action=8),
'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)}
session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
session_state.ROOM.last_mcts = session_state.ROOM.MCTS
session_state.ROOM.PLAYER = session_state.ROOM.PLAYER
session_state.ROOM.TURN = session_state.ROOM.PLAYER
session_state.ROOM.WINNER = _BLANK # 0
session_state.ROOM.ai_simula_time_list = []
session_state.ROOM.human_simula_time_list = []
session_state.ROOM.COORDINATE_1D = []
RESTART.button(
"Reset",
on_click=restart,
help="Clear the board as well as the scores",
)
CHANGE_PLAYER.button(
"Swap players",
on_click=swap_players,
help="Swap players",
)
# Draw the board
def gomoku():
"""
Draw the board.
Handle the main logic.
"""
# Restart the game
# Continue new round
def another_round() -> None:
"""
Continue new round.
"""
session_state.ROOM = deepcopy(session_state.ROOM)
session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5)
session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100),
'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["duel"]).policy_value_fn,
c_puct=5, n_playout=100),
'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100, m_action=8),
'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)}
session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
session_state.ROOM.last_mcts = session_state.ROOM.MCTS
session_state.ROOM.PLAYER = session_state.ROOM.PLAYER
session_state.ROOM.TURN = session_state.ROOM.PLAYER
session_state.ROOM.WINNER = _BLANK # 0
session_state.ROOM.ai_simula_time_list = []
session_state.ROOM.human_simula_time_list = []
session_state.ROOM.COORDINATE_1D = []
# Room status sync
def sync_room() -> bool:
room_id = session_state.ROOM.ROOM_ID
if room_id not in server_state.ROOMS.keys():
session_state.ROOM = Room("local")
return False
elif server_state.ROOMS[room_id].TIME == session_state.ROOM.TIME:
return False
elif server_state.ROOMS[room_id].TIME < session_state.ROOM.TIME:
# Only acquire the lock when writing to the server state
with server_state_lock["ROOMS"]:
server_rooms = server_state.ROOMS
server_rooms[room_id] = session_state.ROOM
server_state.ROOMS = server_rooms
return True
else:
session_state.ROOM = server_state.ROOMS[room_id]
return True
# Triggers the board response on click
def handle_click(x, y):
"""
Controls whether to pass on / continue current board / may start new round
"""
if session_state.ROOM.BOARD.board_map[x][y] != _BLANK:
pass
elif (
session_state.ROOM.ROOM_ID in server_state.ROOMS.keys()
and _ROOM_COLOR[session_state.OWNER]
!= server_state.ROOMS[session_state.ROOM.ROOM_ID].TURN
):
sync_room()
# normal play situation
elif session_state.ROOM.WINNER == _BLANK:
# session_state.ROOM = deepcopy(session_state.ROOM)
# print("View of human player: ", session_state.ROOM.BOARD.board_map)
move = session_state.ROOM.BOARD.location_to_move((x, y))
session_state.ROOM.current_move = move
session_state.ROOM.BOARD.do_move(move)
# Gomoku Bot BOARD
session_state.ROOM.MCTS_dict["Gomoku Bot"].board.put(_BOARD_SIZE - move // _BOARD_SIZE - 1,
move % _BOARD_SIZE) # # this move starts from left up corner (0,0), however, the move in the game starts from left bottom corner (0,0)
session_state.ROOM.BOARD.board_map[x][y] = session_state.ROOM.TURN
session_state.ROOM.COORDINATE_1D.append(x * _BOARD_SIZE + y)
session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN)
win, winner = session_state.ROOM.BOARD.game_end()
if win:
session_state.ROOM.WINNER = winner
session_state.ROOM.HISTORY = (
session_state.ROOM.HISTORY[0]
+ int(session_state.ROOM.WINNER == _WHITE),
session_state.ROOM.HISTORY[1]
+ int(session_state.ROOM.WINNER == _BLACK),
)
session_state.ROOM.TIME = time.time()
def forbid_click(x, y):
# st.warning('This posistion has been occupied!!!!', icon="⚠️")
st.error("({}, {}) has been occupied!!)".format(x, y), icon="🚨")
# Draw board
def draw_board(response: bool):
"""construct each buttons for all cells of the board"""
if response and session_state.ROOM.TURN == _BLACK: # Another AI
message.empty()
with st.spinner('🔮✨ Waiting for AI response... ⏳🚀'):
time.sleep(0.1)
print("AI's turn")
print("Below are current board under AI's view")
if st.session_state['selected_oppo_model_'] != 'Gomoku Bot':
move, simul_time = session_state.ROOM.MCTS_.get_action(session_state.ROOM.BOARD, return_time=True)
else:
move, simul_time = session_state.ROOM.MCTS_.get_action(return_time=True)
session_state.ROOM.ai_simula_time_list_.append(simul_time)
print("AI takes move: ", move)
session_state.ROOM.current_move = move
gpt_response = move
gpt_i, gpt_j = gpt_response // _BOARD_SIZE, gpt_response % _BOARD_SIZE
print("AI's move is located at ({}, {}) :".format(gpt_i, gpt_j))
move = session_state.ROOM.BOARD.location_to_move((gpt_i, gpt_j))
print("Location to move: ", move)
# print("Location to move: ", move)
# MCTS BOARD
session_state.ROOM.BOARD.do_move(move)
# Gomoku Bot BOARD
session_state.ROOM.MCTS_dict_["Gomoku Bot"].board.put(_BOARD_SIZE - 1 - move // _BOARD_SIZE,
move % _BOARD_SIZE)
# session_state.ROOM.BOARD[gpt_i][gpt_j] = session_state.ROOM.TURN
session_state.ROOM.COORDINATE_1D.append(gpt_i * _BOARD_SIZE + gpt_j)
if not session_state.ROOM.BOARD.game_end()[0]:
if session_state.USE_AIAID:
copy_mcts = deepcopy(session_state.ROOM.AID_MCTS.mcts)
_, acts_aid, probs_aid, simul_mean_time_aid = copy_mcts.get_move_probs(session_state.ROOM.BOARD)
sorted_acts_probs = sorted(zip(acts_aid, probs_aid), key=lambda x: x[1], reverse=True)
top_five_acts = [act for act, prob in sorted_acts_probs[:5]]
top_five_probs = [prob for act, prob in sorted_acts_probs[:5]]
else:
top_five_acts = []
top_five_probs = []
# construction of clickable buttons
for i, row in enumerate(session_state.ROOM.BOARD.board_map):
# print("row:", row)
for j, cell in enumerate(row):
if (
i * _BOARD_SIZE + j
in session_state.ROOM.COORDINATE_1D
):
if i == gpt_i and j == gpt_j:
# BOARD_PLATE[i][j].button(
# session_state.Symbol[_NEW],
# key=f"{i}:{j}",
# args=(i, j),
# on_click=forbid_click,
# )
BOARD_PLATE[i][j].write(
session_state.Symbol[_NEW]
)
else:
# disable click for GPT choices
# BOARD_PLATE[i][j].button(
# session_state.Symbol[cell],
# key=f"{i}:{j}",
# args=(i, j),
# on_click=forbid_click
# )
BOARD_PLATE[i][j].write(
session_state.Symbol[cell]
)
else:
if session_state.USE_AIAID and i * _BOARD_SIZE + j in top_five_acts and not \
session_state.ROOM.BOARD.game_end()[0]:
# enable click for other cells available for human choices
prob = top_five_probs[top_five_acts.index(i * _BOARD_SIZE + j)]
# BOARD_PLATE[i][j].button(
# session_state.Symbol[cell] + f"({round(prob, 2)})",
# key=f"{i}:{j}",
# on_click=forbid_click,
# args=(i, j),
# )
BOARD_PLATE[i][j].write(
session_state.Symbol[cell]
)
else:
# enable click for other cells available for human choices
# BOARD_PLATE[i][j].button(
# session_state.Symbol[cell],
# key=f"{i}:{j}",
# on_click=forbid_click,
# args=(i, j),
# )
BOARD_PLATE[i][j].write(
session_state.Symbol[cell]
)
message.markdown(
'AI agent has calculated its strategy, which takes <span style="color: blue; font-size: 20px;">{:.3e}</span>s per simulation.'.format(
simul_time),
unsafe_allow_html=True
)
LOG.subheader("Logs")
# change turn
session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN)
# session_state.ROOM.WINNER = check_win()
win, winner = session_state.ROOM.BOARD.game_end()
if win:
session_state.ROOM.WINNER = winner
session_state.ROOM.HISTORY = (
session_state.ROOM.HISTORY[0]
+ int(session_state.ROOM.WINNER == _WHITE),
session_state.ROOM.HISTORY[1]
+ int(session_state.ROOM.WINNER == _BLACK),
)
session_state.ROOM.TIME = time.time()
elif response and session_state.ROOM.TURN == _WHITE: # AI turn
message.empty()
with st.spinner('🔮✨ Waiting for AI response... ⏳🚀'):
time.sleep(0.1)
print("AI's turn")
print("Below are current board under AI's view")
if st.session_state['selected_oppo_model'] != 'Gomoku Bot':
move, simul_time = session_state.ROOM.MCTS.get_action(session_state.ROOM.BOARD, return_time=True)
else:
move, simul_time = session_state.ROOM.MCTS.get_action(return_time=True)
session_state.ROOM.ai_simula_time_list.append(simul_time)
print("AI takes move: ", move)
session_state.ROOM.current_move = move
gpt_response = move
gpt_i, gpt_j = gpt_response // _BOARD_SIZE, gpt_response % _BOARD_SIZE
print("AI's move is located at ({}, {}) :".format(gpt_i, gpt_j))
move = session_state.ROOM.BOARD.location_to_move((gpt_i, gpt_j))
print("Location to move: ", move)
# MCTS BOARD
session_state.ROOM.BOARD.do_move(move)
# Gomoku Bot BOARD
session_state.ROOM.MCTS_dict["Gomoku Bot"].board.put(_BOARD_SIZE - 1 - move // _BOARD_SIZE,
move % _BOARD_SIZE)
# session_state.ROOM.BOARD[gpt_i][gpt_j] = session_state.ROOM.TURN
session_state.ROOM.COORDINATE_1D.append(gpt_i * _BOARD_SIZE + gpt_j)
if not session_state.ROOM.BOARD.game_end()[0]:
if session_state.USE_AIAID:
copy_mcts = deepcopy(session_state.ROOM.AID_MCTS.mcts)
_, acts_aid, probs_aid, simul_mean_time_aid = copy_mcts.get_move_probs(session_state.ROOM.BOARD)
sorted_acts_probs = sorted(zip(acts_aid, probs_aid), key=lambda x: x[1], reverse=True)
top_five_acts = [act for act, prob in sorted_acts_probs[:5]]
top_five_probs = [prob for act, prob in sorted_acts_probs[:5]]
else:
top_five_acts = []
top_five_probs = []
# construction of clickable buttons
for i, row in enumerate(session_state.ROOM.BOARD.board_map):
# print("row:", row)
for j, cell in enumerate(row):
if (
i * _BOARD_SIZE + j
in session_state.ROOM.COORDINATE_1D
):
if i == gpt_i and j == gpt_j:
# BOARD_PLATE[i][j].button(
# session_state.Symbol[_NEW],
# key=f"{i}:{j}",
# args=(i, j),
# on_click=forbid_click,
# )
BOARD_PLATE[i][j].write(
session_state.Symbol[_NEW]
)
else:
# disable click for GPT choices
# BOARD_PLATE[i][j].button(
# session_state.Symbol[cell],
# key=f"{i}:{j}",
# args=(i, j),
# on_click=forbid_click
# )
BOARD_PLATE[i][j].write(
session_state.Symbol[cell]
)
else:
if session_state.USE_AIAID and i * _BOARD_SIZE + j in top_five_acts and not \
session_state.ROOM.BOARD.game_end()[0]:
# enable click for other cells available for human choices
prob = top_five_probs[top_five_acts.index(i * _BOARD_SIZE + j)]
# BOARD_PLATE[i][j].button(
# session_state.Symbol[cell] + f"({round(prob, 2)})",
# key=f"{i}:{j}",
# on_click=forbid_click,
# args=(i, j),
# )
BOARD_PLATE[i][j].write(
session_state.Symbol[cell]
)
else:
# enable click for other cells available for human choices
# BOARD_PLATE[i][j].button(
# session_state.Symbol[cell],
# key=f"{i}:{j}",
# on_click=forbid_click,
# args=(i, j),
# )
BOARD_PLATE[i][j].write(
session_state.Symbol[cell]
)
message.markdown(
'AI agent has calculated its strategy, which takes <span style="color: blue; font-size: 20px;">{:.3e}</span>s per simulation.'.format(
simul_time),
unsafe_allow_html=True
)
LOG.subheader("Logs")
# change turn
session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN)
# session_state.ROOM.WINNER = check_win()
win, winner = session_state.ROOM.BOARD.game_end()
if win:
session_state.ROOM.WINNER = winner
session_state.ROOM.HISTORY = (
session_state.ROOM.HISTORY[0]
+ int(session_state.ROOM.WINNER == _WHITE),
session_state.ROOM.HISTORY[1]
+ int(session_state.ROOM.WINNER == _BLACK),
)
session_state.ROOM.TIME = time.time()
if not response or session_state.ROOM.WINNER != _BLANK:
if session_state.ROOM.WINNER != _BLANK:
print("Game over")
for i, row in enumerate(session_state.ROOM.BOARD.board_map):
for j, cell in enumerate(row):
BOARD_PLATE[i][j].write(
session_state.Symbol[cell],
# key=f"{i}:{j}",
)
# Game process control
def game_control():
if session_state.ROOM.WINNER != _BLANK:
draw_board(False)
else:
draw_board(True)
if session_state.ROOM.WINNER != _BLANK or 0 not in session_state.ROOM.BOARD.board_map:
ANOTHER_ROUND.button(
"Play Next round!",
on_click=another_round,
help="Clear board and swap first player",
)
# Infos
def update_info() -> None:
# Additional information
if session_state.ROOM.WINNER != _BLANK:
st.balloons()
ROUND_INFO.write(
f"#### **{_PLAYER_COLOR_AI_VS_AI[session_state.ROOM.WINNER]} WIN!**\n**Click buttons on the left for more plays.**"
)
st.markdown("<br>", unsafe_allow_html=True)
st.markdown("<br>", unsafe_allow_html=True)
chart_data = pd.DataFrame(session_state.ROOM.ai_simula_time_list, columns=["Simulation Time"])
chart_placeholder.line_chart(chart_data)
chart_placeholder = st.empty()
while session_state.ROOM.WINNER == _BLANK:
game_control()
update_info()
SCORE_PLATE[0].metric("Gomoku-Agent1", session_state.ROOM.HISTORY[0])
SCORE_PLATE[1].metric("Gomoku-Agent2", session_state.ROOM.HISTORY[1])
if __name__ == "__main__":
gomoku()