Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,807 Bytes
aaf39d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
# @GonzaloMartinGarcia
# This file is a modified version of the original Marigold pipeline file.
# Based on GeoWizard, we added the option to sample surface normals, marked with # add.
from typing import Dict, Union
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LCMScheduler,
UNet2DConditionModel,
DDPMScheduler,
)
from diffusers.utils import BaseOutput
from PIL import Image
from torchvision.transforms.functional import resize, pil_to_tensor
from torchvision.transforms import InterpolationMode
from torch.utils.data import DataLoader, TensorDataset
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from .util.batchsize import find_batch_size
from .util.ensemble import ensemble_depths
from .util.image_util import (
chw2hwc,
colorize_depth_maps,
get_tv_resample_method,
resize_max_res,
)
# add
import random
# add
# Surface Normals Ensamble from the GeoWizard github repository (https://github.com/fuxiao0719/GeoWizard)
def ensemble_normals(input_images:torch.Tensor):
normal_preds = input_images
bsz, d, h, w = normal_preds.shape
normal_preds = normal_preds / (torch.norm(normal_preds, p=2, dim=1).unsqueeze(1)+1e-5)
phi = torch.atan2(normal_preds[:,1,:,:], normal_preds[:,0,:,:]).mean(dim=0)
theta = torch.atan2(torch.norm(normal_preds[:,:2,:,:], p=2, dim=1), normal_preds[:,2,:,:]).mean(dim=0)
normal_pred = torch.zeros((d,h,w)).to(normal_preds)
normal_pred[0,:,:] = torch.sin(theta) * torch.cos(phi)
normal_pred[1,:,:] = torch.sin(theta) * torch.sin(phi)
normal_pred[2,:,:] = torch.cos(theta)
angle_error = torch.acos(torch.clip(torch.cosine_similarity(normal_pred[None], normal_preds, dim=1),-0.999, 0.999))
normal_idx = torch.argmin(angle_error.reshape(bsz,-1).sum(-1))
return normal_preds[normal_idx], None
# add
# Pyramid nosie from
# https://wandb.ai/johnowhitaker/multires_noise/reports/Multi-Resolution-Noise-for-Diffusion-Model-Training--VmlldzozNjYyOTU2?s=31
def pyramid_noise_like(x, discount=0.9):
b, c, w, h = x.shape
u = torch.nn.Upsample(size=(w, h), mode='bilinear')
noise = torch.randn_like(x)
for i in range(10):
r = random.random()*2+2
w, h = max(1, int(w/(r**i))), max(1, int(h/(r**i)))
noise += u(torch.randn(b, c, w, h).to(x)) * discount**i
if w==1 or h==1:
break
return noise / noise.std()
class MarigoldDepthOutput(BaseOutput):
"""
Output class for Marigold monocular depth prediction pipeline.
Args:
depth_np (`np.ndarray`):
Predicted depth map, with depth values in the range of [0, 1].
depth_colored (`PIL.Image.Image`):
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
uncertainty (`None` or `np.ndarray`):
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
normal_np (`np.ndarray`):
Predicted normal map, with normal vectors in the range of [-1, 1].
normal_colored (`PIL.Image.Image`):
Colorized normal map
"""
depth_np: np.ndarray
depth_colored: Union[None, Image.Image]
uncertainty: Union[None, np.ndarray]
# add
normal_np: np.ndarray
normal_colored: Union[None, Image.Image]
class MarigoldPipeline(DiffusionPipeline):
"""
Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
unet (`UNet2DConditionModel`):
Conditional U-Net to denoise the depth latent, conditioned on image latent.
vae (`AutoencoderKL`):
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
to and from latent representations.
scheduler (`DDIMScheduler`):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
text_encoder (`CLIPTextModel`):
Text-encoder, for empty text embedding.
tokenizer (`CLIPTokenizer`):
CLIP tokenizer.
"""
rgb_latent_scale_factor = 0.18215
depth_latent_scale_factor = 0.18215
def __init__(
self,
unet: UNet2DConditionModel,
vae: AutoencoderKL,
scheduler: Union[DDIMScheduler,DDPMScheduler,LCMScheduler],
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
):
super().__init__()
self.register_modules(
unet=unet,
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
self.empty_text_embed = None
@torch.no_grad()
def __call__(
self,
input_image: Union[Image.Image, torch.Tensor],
denoising_steps: int = 10,
ensemble_size: int = 10,
processing_res: int = 768,
match_input_res: bool = True,
resample_method: str = "bilinear",
batch_size: int = 0,
color_map: str = "Spectral",
show_progress_bar: bool = True,
ensemble_kwargs: Dict = None,
# add
noise="gaussian",
normals=False,
) -> MarigoldDepthOutput:
"""
Function invoked when calling the pipeline.
Args:
input_image (`Image`):
Input RGB (or gray-scale) image.
processing_res (`int`, *optional*, defaults to `768`):
Maximum resolution of processing.
If set to 0: will not resize at all.
match_input_res (`bool`, *optional*, defaults to `True`):
Resize depth prediction to match input resolution.
Only valid if `processing_res` > 0.
resample_method: (`str`, *optional*, defaults to `bilinear`):
Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`, defaults to: `bilinear`.
denoising_steps (`int`, *optional*, defaults to `10`):
Number of diffusion denoising steps (DDIM) during inference.
ensemble_size (`int`, *optional*, defaults to `10`):
Number of predictions to be ensembled.
batch_size (`int`, *optional*, defaults to `0`):
Inference batch size, no bigger than `num_ensemble`.
If set to 0, the script will automatically decide the proper batch size.
show_progress_bar (`bool`, *optional*, defaults to `True`):
Display a progress bar of diffusion denoising.
color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation):
Colormap used to colorize the depth map.
ensemble_kwargs (`dict`, *optional*, defaults to `None`):
Arguments for detailed ensembling settings.
noise (`str`, *optional*, defaults to `gaussian`):
Type of noise to be used for the initial depth map.
Can be one of `gaussian`, `pyramid`, `zeros`.
normals (`bool`, *optional*, defaults to `False`):
If `True`, the pipeline will predict surface normals instead of depth maps.
Returns:
`MarigoldDepthOutput`: Output class for Marigold monocular depth prediction pipeline, including:
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1], None if `color_map` is `None`
- **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation)
coming from ensembling. None if `ensemble_size = 1`
- **normal_np** (`np.ndarray`) Predicted normal map, with normal vectors in the range of [-1, 1]
- **normal_colored** (`PIL.Image.Image`) Colorized normal map
"""
assert processing_res >= 0
assert ensemble_size >= 1
resample_method: InterpolationMode = get_tv_resample_method(resample_method)
# ----------------- Image Preprocess -----------------
# Convert to torch tensor
if isinstance(input_image, Image.Image):
input_image = input_image.convert("RGB")
rgb = pil_to_tensor(input_image) # [H, W, rgb] -> [rgb, H, W]
elif isinstance(input_image, torch.Tensor):
rgb = input_image.squeeze()
else:
raise TypeError(f"Unknown input type: {type(input_image) = }")
input_size = rgb.shape
assert (
3 == rgb.dim() and 3 == input_size[0]
), f"Wrong input shape {input_size}, expected [rgb, H, W]"
# Resize image
if processing_res > 0:
rgb = resize_max_res(
rgb,
max_edge_resolution=processing_res,
resample_method=resample_method,
)
# Normalize rgb values
rgb_norm: torch.Tensor = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
rgb_norm = rgb_norm.to(self.dtype)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
# ----------------- Predicting depth/normal --------------
# Batch repeated input image
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
single_rgb_dataset = TensorDataset(duplicated_rgb)
if batch_size > 0:
_bs = batch_size
else:
_bs = find_batch_size(
ensemble_size=ensemble_size,
input_res=max(rgb_norm.shape[1:]),
dtype=self.dtype,
)
single_rgb_loader = DataLoader(
single_rgb_dataset, batch_size=_bs, shuffle=False
)
# load iterator
pred_ls = []
if show_progress_bar:
iterable = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable = single_rgb_loader
# inference (batched)
for batch in iterable:
(batched_img,) = batch
pred_raw = self.single_infer(
rgb_in=batched_img,
num_inference_steps=denoising_steps,
show_pbar=show_progress_bar,
# add
noise=noise,
normals=normals,
)
pred_ls.append(pred_raw.detach())
preds = torch.concat(pred_ls, dim=0).squeeze()
torch.cuda.empty_cache() # clear vram cache for ensembling
# ----------------- Test-time ensembling -----------------
if ensemble_size > 1: # add
pred, pred_uncert = ensemble_normals(preds) if normals else ensemble_depths(preds, **(ensemble_kwargs or {}))
else:
pred = preds
pred_uncert = None
# ----------------- Post processing -----------------
if normals:
# add
# Normalizae normal vectors to unit length
pred /= (torch.norm(pred, p=2, dim=0, keepdim=True)+1e-5)
else:
# Scale relative prediction to [0, 1]
min_d = torch.min(pred)
max_d = torch.max(pred)
if max_d == min_d:
pred = torch.zeros_like(pred)
else:
pred = (pred - min_d) / (max_d - min_d)
# Resize back to original resolution
if match_input_res:
pred = resize(
pred if normals else pred.unsqueeze(0),
(input_size[-2],input_size[-1]),
interpolation=resample_method,
antialias=True,
).squeeze()
# Convert to numpy
pred = pred.cpu().numpy()
# Process prediction for visualization
if not normals:
# add
pred = pred.clip(0, 1)
if color_map is not None:
colored = colorize_depth_maps(
pred, 0, 1, cmap=color_map
).squeeze() # [3, H, W], value in (0, 1)
colored = (colored * 255).astype(np.uint8)
colored_hwc = chw2hwc(colored)
colored_img = Image.fromarray(colored_hwc)
else:
colored_img = None
else:
pred = pred.clip(-1.0, 1.0)
colored = (((pred+1)/2) * 255).astype(np.uint8)
colored_hwc = chw2hwc(colored)
colored_img = Image.fromarray(colored_hwc)
return MarigoldDepthOutput(
depth_np = pred if not normals else None,
depth_colored = colored_img if not normals else None,
uncertainty = pred_uncert,
# add
normal_np = pred if normals else None,
normal_colored = colored_img if normals else None,
)
def encode_empty_text(self):
"""
Encode text embedding for empty prompt
"""
prompt = ""
text_inputs = self.tokenizer(
prompt,
padding="do_not_pad",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
@torch.no_grad()
def single_infer(
self,
rgb_in: torch.Tensor,
num_inference_steps: int,
show_pbar: bool,
# add
noise="gaussian",
normals=False,
) -> torch.Tensor:
"""
Perform an individual depth prediction without ensembling.
Args:
rgb_in (`torch.Tensor`):
Input RGB image.
num_inference_steps (`int`):
Number of diffusion denoisign steps (DDIM) during inference.
show_pbar (`bool`):
Display a progress bar of diffusion denoising.
noise (`str`, *optional*, defaults to `gaussian`):
Type of noise to be used for the initial depth map.
Can be one of `gaussian`, `pyramid`, `zeros`.
Returns:
`torch.Tensor`: Predicted depth map.
"""
device = self.device
rgb_in = rgb_in.to(device)
# Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps # [T]
# Encode image
rgb_latent = self.encode_rgb(rgb_in)
# add
# Initial prediction
latent_shape = rgb_latent.shape
if noise == "gaussian":
latent = torch.randn(
latent_shape,
device=device,
dtype=self.dtype,
)
elif noise == "pyramid":
latent = pyramid_noise_like(rgb_latent).to(device) # [B, 4, h, w]
elif noise == "zeros":
latent = torch.zeros(
latent_shape,
device=device,
dtype=self.dtype,
)
else:
raise ValueError(f"Unknown noise type: {noise}")
# Batched empty text embedding
if self.empty_text_embed is None:
self.encode_empty_text()
batch_empty_text_embed = self.empty_text_embed.repeat(
(rgb_latent.shape[0], 1, 1)
) # [B, 2, 1024]
# Denoising loop
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
for i, t in iterable:
unet_input = torch.cat(
[rgb_latent, latent], dim=1
) # this order is important
# predict the noise residual
noise_pred = self.unet(
unet_input, t, encoder_hidden_states=batch_empty_text_embed
).sample # [B, 4, h, w]
# compute the previous noisy sample x_t -> x_t-1
scheduler_step = self.scheduler.step(
noise_pred, t, latent
)
latent = scheduler_step.prev_sample
if normals:
# add
# decode and normalize normal vectors
normal = self.decode_normal(latent)
normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
return normal
else:
# decode and normalize depth map
depth = self.decode_depth(latent)
depth = torch.clip(depth, -1.0, 1.0)
depth = (depth + 1.0) / 2.0
return depth
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
h = self.vae.encoder(rgb_in)
moments = self.vae.quant_conv(h)
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
rgb_latent = mean * self.rgb_latent_scale_factor
return rgb_latent
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
"""
Decode depth latent into depth map.
Args:
depth_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
# scale latent
depth_latent = depth_latent / self.depth_latent_scale_factor
# decode
z = self.vae.post_quant_conv(depth_latent)
stacked = self.vae.decoder(z)
# mean of output channels
depth_mean = stacked.mean(dim=1, keepdim=True)
return depth_mean
# add
def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
"""
Decode normal latent into normal map.
Args:
normal_latent (`torch.Tensor`):
normal latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
# scale latent
normal_latent = normal_latent / self.depth_latent_scale_factor
# decode
z = self.vae.post_quant_conv(normal_latent)
normal = self.vae.decoder(z)
return normal
|