Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,171 Bytes
f5a0315 e2bd985 fbad7a8 7fbe3ab e2bd985 fbad7a8 029bde2 e2bd985 dbb5354 e2bd985 f5a0315 e2bd985 fbad7a8 326dd31 e2bd985 326dd31 e2bd985 fbad7a8 e0b6027 aeb7b27 e0b6027 fbad7a8 fd55a71 fbad7a8 326dd31 fbad7a8 e2bd985 326dd31 e2bd985 fd55a71 e2bd985 dbb5354 fd55a71 fbad7a8 e0b6027 fbad7a8 6c9dbcd 326dd31 fbad7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
###########################################################################################
# Code based on the Hugging Face Space of Depth Anything v2
# https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/blob/main/app.py
###########################################################################################
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from Marigold.marigold import MarigoldPipeline
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.float32
variant = None
checkpoint_path = "GonzaloMG/marigold-e2e-ft-depth"
unet = UNet2DConditionModel.from_pretrained(checkpoint_path, subfolder="unet")
vae = AutoencoderKL.from_pretrained(checkpoint_path, subfolder="vae")
text_encoder = CLIPTextModel.from_pretrained(checkpoint_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(checkpoint_path, subfolder="tokenizer")
scheduler = DDIMScheduler.from_pretrained(checkpoint_path, timestep_spacing="trailing", subfolder="scheduler")
pipe = MarigoldPipeline.from_pretrained(pretrained_model_name_or_path = checkpoint_path,
unet=unet,
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
variant=variant,
torch_dtype=dtype,
)
pipe = pipe.to(DEVICE)
pipe.unet.eval()
title = "# End-to-End Fine-Tuned Marigold for Depth Estimation"
description = """ Please refer to our [paper](https://arxiv.org/abs/2409.11355) and [GitHub](https://vision.rwth-aachen.de/diffusion-e2e-ft) for more details."""
@spaces.GPU
def predict_depth(image, processing_res_choice):
with torch.no_grad():
pipe_out = pipe(image, denoising_steps=1, ensemble_size=1, noise="zeros", normals=False, processing_res=processing_res_choice, match_input_res=True)
pred = pipe_out.depth_np
pred_colored = pipe_out.depth_colored
return pred, pred_colored
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
with gr.Row():
submit = gr.Button(value="Compute Depth")
processing_res_choice = gr.Radio(
[
("Recommended (768)", 768),
("Native", 0),
],
label="Processing resolution",
value=768,
)
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
raw_file = gr.File(label="Raw Depth Data (.npy)", elem_id="download")
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
def on_submit(image, processing_res_choice):
if image is None:
print("No image uploaded.")
return None
pil_image = Image.fromarray(image.astype('uint8'))
depth_npy, depth_colored = predict_depth(pil_image, processing_res_choice)
# Save the npy data (raw depth map)
tmp_npy_depth = tempfile.NamedTemporaryFile(suffix='.npy', delete=False)
np.save(tmp_npy_depth.name, depth_npy)
# Save the grayscale depth map
depth_gray = (depth_npy * 65535.0).astype(np.uint16)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
Image.fromarray(depth_gray).save(tmp_gray_depth.name, mode="I;16")
# Save the colored depth map
tmp_colored_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
depth_colored.save(tmp_colored_depth.name)
return [(image, depth_colored), tmp_gray_depth.name, tmp_npy_depth.name]
submit.click(on_submit, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider, gray_depth_file, raw_file])
example_files = os.listdir('assets/examples')
example_files.sort()
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
example_files = [[image, 768] for image in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
if __name__ == '__main__':
demo.queue().launch(share=True) |