GonzaloMG's picture
Update app.py
a85c10d verified
raw
history blame
6.76 kB
import gradio as gr
import cv2
import matplotlib
import numpy as np
import os
from PIL import Image
import spaces
import torch
import tempfile
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
# from depth_anything_v2.dpt import DepthAnythingV2
from Marigold.marigold import MarigoldPipeline
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer
# import xformers
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
#download {
height: 62px;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.float32
variant = None
checkpoint_path = "GonzaloMG/marigold-e2e-ft-depth"
unet = UNet2DConditionModel.from_pretrained(checkpoint_path, subfolder="unet")
vae = AutoencoderKL.from_pretrained(checkpoint_path, subfolder="vae")
text_encoder = CLIPTextModel.from_pretrained(checkpoint_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(checkpoint_path, subfolder="tokenizer")
scheduler = DDIMScheduler.from_pretrained(checkpoint_path, timestep_spacing="trailing", subfolder="scheduler")
pipe = MarigoldPipeline.from_pretrained(pretrained_model_name_or_path = checkpoint_path,
unet=unet,
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
variant=variant,
torch_dtype=dtype,
)
# try:
# pipe.enable_xformers_memory_efficient_attention()
# except ImportError:
# pass # run without xformers
pipe = pipe.to(DEVICE)
pipe.unet.eval()
# model_configs = {
# 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
# 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
# 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
# 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
# }
# encoder2name = {
# 'vits': 'Small',
# 'vitb': 'Base',
# 'vitl': 'Large',
# 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
# }
# encoder = 'vitl'
# model_name = encoder2name[encoder]
# model = DepthAnythingV2(**model_configs[encoder])
# filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
# state_dict = torch.load(filepath, map_location="cpu")
# model.load_state_dict(state_dict)
# model = model.to(DEVICE).eval()
title = "# ..."
description = """... **...**"""
# def predict_depth(image):
# return model.infer_image(image)
@spaces.GPU
def predict_depth(image, processing_res_choice):
with torch.no_grad():
pipe_out = pipe(image, denoising_steps=1, ensemble_size=1, noise="zeros", normals=False, processing_res=processing_res_choice, match_input_res=True)
pred = pipe_out.depth_np
pred_colored = pipe_out.depth_colored
return pred, pred_colored
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
with gr.Row():
submit = gr.Button(value="Compute Depth")
processing_res_choice = gr.Radio(
[
("Recommended (768)", 768),
("Native", 0),
],
label="Processing resolution",
value=768,
)
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
raw_file = gr.File(label="Raw Depth Data (.npy)", elem_id="download")
# raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
def on_submit(image, processing_res_choice):
if image is None:
print("No image uploaded.")
return None
pil_image = Image.fromarray(image.astype('uint8'))
depth_npy, depth_colored = predict_depth(pil_image, processing_res_choice)
# Save the npy data (raw depth map)
tmp_npy_depth = tempfile.NamedTemporaryFile(suffix='.npy', delete=False)
np.save(tmp_npy_depth.name, depth_npy)
# Save the grayscale depth map
depth_gray = (depth_npy * 65535.0).astype(np.uint16)
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
Image.fromarray(depth_gray).save(tmp_gray_depth.name, mode="I;16")
# Save the colored depth map
tmp_colored_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
depth_colored.save(tmp_colored_depth.name)
return [(image, depth_colored), tmp_gray_depth.name, tmp_npy_depth.name]
# h, w = image.shape[:2]
# depth = predict_depth(image[:, :, ::-1])
# raw_depth = Image.fromarray(depth.astype('uint16'))
# tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
# raw_depth.save(tmp_raw_depth.name)
# depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
# depth = depth.astype(np.uint8)
# colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
# gray_depth = Image.fromarray(depth)
# tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
# gray_depth.save(tmp_gray_depth.name)
# return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
submit.click(on_submit, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider, gray_depth_file, raw_file])
example_files = os.listdir('assets/examples')
example_files.sort()
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
example_files = [[image, processing_res_choice] for image in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
if __name__ == '__main__':
demo.queue().launch(share=True)