Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------------------------- | |
# If you find this code useful, we kindly ask you to cite our paper in your work. | |
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation | |
# More information about the method can be found at https://marigoldmonodepth.github.io | |
# -------------------------------------------------------------------------- | |
import numpy as np | |
import torch | |
from scipy.optimize import minimize | |
def inter_distances(tensors: torch.Tensor): | |
""" | |
To calculate the distance between each two depth maps. | |
""" | |
distances = [] | |
for i, j in torch.combinations(torch.arange(tensors.shape[0])): | |
arr1 = tensors[i : i + 1] | |
arr2 = tensors[j : j + 1] | |
distances.append(arr1 - arr2) | |
dist = torch.concatenate(distances, dim=0) | |
return dist | |
def ensemble_depths( | |
input_images: torch.Tensor, | |
regularizer_strength: float = 0.02, | |
max_iter: int = 2, | |
tol: float = 1e-3, | |
reduction: str = "median", | |
max_res: int = None, | |
): | |
""" | |
To ensemble multiple affine-invariant depth images (up to scale and shift), | |
by aligning estimating the scale and shift | |
""" | |
device = input_images.device | |
dtype = input_images.dtype | |
np_dtype = np.float32 | |
original_input = input_images.clone() | |
n_img = input_images.shape[0] | |
ori_shape = input_images.shape | |
if max_res is not None: | |
scale_factor = torch.min(max_res / torch.tensor(ori_shape[-2:])) | |
if scale_factor < 1: | |
downscaler = torch.nn.Upsample(scale_factor=scale_factor, mode="nearest") | |
input_images = downscaler(input_images) | |
# init guess | |
_min = np.min(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1) | |
_max = np.max(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1) | |
s_init = 1.0 / (_max - _min).reshape((-1, 1, 1)) | |
t_init = (-1 * s_init.flatten() * _min.flatten()).reshape((-1, 1, 1)) | |
x = np.concatenate([s_init, t_init]).reshape(-1).astype(np_dtype) | |
input_images = input_images.to(device) | |
# objective function | |
def closure(x): | |
len_x = len(x) | |
s = x[: int(len_x / 2)] | |
t = x[int(len_x / 2) :] | |
s = torch.from_numpy(s).to(dtype=dtype).to(device) | |
t = torch.from_numpy(t).to(dtype=dtype).to(device) | |
transformed_arrays = input_images * s.view((-1, 1, 1)) + t.view((-1, 1, 1)) | |
dists = inter_distances(transformed_arrays) | |
sqrt_dist = torch.sqrt(torch.mean(dists**2)) | |
if "mean" == reduction: | |
pred = torch.mean(transformed_arrays, dim=0) | |
elif "median" == reduction: | |
pred = torch.median(transformed_arrays, dim=0).values | |
else: | |
raise ValueError | |
near_err = torch.sqrt((0 - torch.min(pred)) ** 2) | |
far_err = torch.sqrt((1 - torch.max(pred)) ** 2) | |
err = sqrt_dist + (near_err + far_err) * regularizer_strength | |
err = err.detach().cpu().numpy().astype(np_dtype) | |
return err | |
res = minimize( | |
closure, x, method="BFGS", tol=tol, options={"maxiter": max_iter, "disp": False} | |
) | |
x = res.x | |
len_x = len(x) | |
s = x[: int(len_x / 2)] | |
t = x[int(len_x / 2) :] | |
# Prediction | |
s = torch.from_numpy(s).to(dtype=dtype).to(device) | |
t = torch.from_numpy(t).to(dtype=dtype).to(device) | |
transformed_arrays = original_input * s.view(-1, 1, 1) + t.view(-1, 1, 1) | |
if "mean" == reduction: | |
aligned_images = torch.mean(transformed_arrays, dim=0) | |
std = torch.std(transformed_arrays, dim=0) | |
uncertainty = std | |
elif "median" == reduction: | |
aligned_images = torch.median(transformed_arrays, dim=0).values | |
# MAD (median absolute deviation) as uncertainty indicator | |
abs_dev = torch.abs(transformed_arrays - aligned_images) | |
mad = torch.median(abs_dev, dim=0).values | |
uncertainty = mad | |
else: | |
raise ValueError(f"Unknown reduction method: {reduction}") | |
# Scale and shift to [0, 1] | |
_min = torch.min(aligned_images) | |
_max = torch.max(aligned_images) | |
aligned_images = (aligned_images - _min) / (_max - _min) | |
uncertainty /= _max - _min | |
return aligned_images, uncertainty | |