GonzaloMG commited on
Commit
f5a0315
1 Parent(s): 6c9dbcd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -51
app.py CHANGED
@@ -1,3 +1,8 @@
 
 
 
 
 
1
  import gradio as gr
2
  import cv2
3
  import matplotlib
@@ -10,11 +15,9 @@ import tempfile
10
  from gradio_imageslider import ImageSlider
11
  from huggingface_hub import hf_hub_download
12
 
13
- # from depth_anything_v2.dpt import DepthAnythingV2
14
  from Marigold.marigold import MarigoldPipeline
15
  from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
16
  from transformers import CLIPTextModel, CLIPTokenizer
17
- # import xformers
18
 
19
  css = """
20
  #img-display-container {
@@ -48,39 +51,12 @@ pipe = MarigoldPipeline.from_pretrained(pretrained_model_name_or_path = checkpoi
48
  variant=variant,
49
  torch_dtype=dtype,
50
  )
51
- # try:
52
- # pipe.enable_xformers_memory_efficient_attention()
53
- # except ImportError:
54
- # pass # run without xformers
55
  pipe = pipe.to(DEVICE)
56
  pipe.unet.eval()
57
 
58
- # model_configs = {
59
- # 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
60
- # 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
61
- # 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
62
- # 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
63
- # }
64
- # encoder2name = {
65
- # 'vits': 'Small',
66
- # 'vitb': 'Base',
67
- # 'vitl': 'Large',
68
- # 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
69
- # }
70
- # encoder = 'vitl'
71
- # model_name = encoder2name[encoder]
72
- # model = DepthAnythingV2(**model_configs[encoder])
73
- # filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
74
- # state_dict = torch.load(filepath, map_location="cpu")
75
- # model.load_state_dict(state_dict)
76
- # model = model.to(DEVICE).eval()
77
-
78
- title = "# ..."
79
- description = """... **...**"""
80
-
81
-
82
- # def predict_depth(image):
83
- # return model.infer_image(image)
84
 
85
  @spaces.GPU
86
  def predict_depth(image, processing_res_choice):
@@ -112,7 +88,6 @@ with gr.Blocks(css=css) as demo:
112
 
113
  gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
114
  raw_file = gr.File(label="Raw Depth Data (.npy)", elem_id="download")
115
- # raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
116
 
117
  cmap = matplotlib.colormaps.get_cmap('Spectral_r')
118
 
@@ -140,24 +115,6 @@ with gr.Blocks(css=css) as demo:
140
 
141
  return [(image, depth_colored), tmp_gray_depth.name, tmp_npy_depth.name]
142
 
143
- # h, w = image.shape[:2]
144
-
145
- # depth = predict_depth(image[:, :, ::-1])
146
-
147
- # raw_depth = Image.fromarray(depth.astype('uint16'))
148
- # tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
149
- # raw_depth.save(tmp_raw_depth.name)
150
-
151
- # depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
152
- # depth = depth.astype(np.uint8)
153
- # colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
154
-
155
- # gray_depth = Image.fromarray(depth)
156
- # tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
157
- # gray_depth.save(tmp_gray_depth.name)
158
-
159
- # return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
160
-
161
  submit.click(on_submit, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider, gray_depth_file, raw_file])
162
 
163
  example_files = os.listdir('assets/examples')
 
1
+ ###########################################################################################
2
+ # Code based on the Hugging Face Space of Depth Anything v2
3
+ # https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/blob/main/app.py
4
+ ###########################################################################################
5
+
6
  import gradio as gr
7
  import cv2
8
  import matplotlib
 
15
  from gradio_imageslider import ImageSlider
16
  from huggingface_hub import hf_hub_download
17
 
 
18
  from Marigold.marigold import MarigoldPipeline
19
  from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
20
  from transformers import CLIPTextModel, CLIPTokenizer
 
21
 
22
  css = """
23
  #img-display-container {
 
51
  variant=variant,
52
  torch_dtype=dtype,
53
  )
 
 
 
 
54
  pipe = pipe.to(DEVICE)
55
  pipe.unet.eval()
56
 
57
+
58
+ title = "# End-to-End Fine-Tuned Marigold for Depth Estimation"
59
+ description = """ Please refer to our [paper](https://arxiv.org/abs/2409.11355) and [GitHub](https://vision.rwth-aachen.de/diffusion-e2e-ft) for more details."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  @spaces.GPU
62
  def predict_depth(image, processing_res_choice):
 
88
 
89
  gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
90
  raw_file = gr.File(label="Raw Depth Data (.npy)", elem_id="download")
 
91
 
92
  cmap = matplotlib.colormaps.get_cmap('Spectral_r')
93
 
 
115
 
116
  return [(image, depth_colored), tmp_gray_depth.name, tmp_npy_depth.name]
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  submit.click(on_submit, inputs=[input_image, processing_res_choice], outputs=[depth_image_slider, gray_depth_file, raw_file])
119
 
120
  example_files = os.listdir('assets/examples')