Spaces:
Sleeping
Sleeping
File size: 11,212 Bytes
1d30310 be5cc68 1d30310 be5cc68 9c7b15b be5cc68 a6d636f be5cc68 1d30310 be5cc68 1d30310 be5cc68 1d30310 be5cc68 1d30310 be5cc68 1d30310 be5cc68 fa249b8 be5cc68 f348605 be5cc68 fa249b8 be5cc68 fa249b8 be5cc68 fa249b8 be5cc68 fa249b8 be5cc68 fa249b8 be5cc68 fa249b8 be5cc68 1d30310 be5cc68 1d30310 be5cc68 fa249b8 be5cc68 fa249b8 be5cc68 fa249b8 be5cc68 1d30310 be5cc68 1d30310 be5cc68 fa249b8 be5cc68 fa249b8 be5cc68 e0a31ac 4059fc9 be5cc68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import numpy as np
import gradio as gr
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import torch
from torchvision import datasets, transforms
from custom_resnet import CustomResNet
import random
model = CustomResNet()
model.load_state_dict(torch.load('CustomResNet.pth', map_location=torch.device('cpu')), strict=False)
model.eval()
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
def inference(input_img, input_slider_grad_or_not, transparency = 0.5, target_layer_number = 3, topk = 3):
mean=[0.49139968, 0.48215827, 0.44653124]
std=[0.24703233, 0.24348505, 0.26158768]
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
orginal_img = input_img
input_img = transform(input_img)
input_img = input_img.unsqueeze(0)
outputs = model(input_img)
softmax = torch.nn.Softmax(dim=0)
o = softmax(outputs.flatten())
confidences = {classes[i]: float(o[i]) for i in range(10)}
if input_slider_grad_or_not == "No":
return confidences, orginal_img
_, prediction = torch.max(outputs, 1)
target_layers = [model.layer_3[-1]]
if target_layer_number == 1:
target_layers = [model.layer_1[-1]]
if target_layer_number == 2:
target_layers = [model.layer_2[-1]]
if target_layer_number == 3:
target_layers = [model.layer_3[-1]]
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False)
grayscale_cam = cam(input_tensor=input_img, targets=None)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(orginal_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
return confidences, visualization
def show_gradcam_images(n, a, b):
images = [
('examples/car.jpg', 'car'),
('examples/cat.jpg', 'cat'),
('examples/dog.jpg', 'dog'),
('examples/horse.jpg', 'horse'),
('examples/ship.jpg', 'ship'),
('examples/bird.jpg', 'bird'),
('examples/frog.jpg', 'frog'),
('examples/plane.jpg', 'plane'),
('examples/truck.jpg', 'truck'),
('examples/deer.jpg', 'deer'),
]
images_with_gradcam = []
for image_path, label in images:
image = Image.open(image_path)
image = image.resize((32, 32))
image_array = np.asarray(image)
visualization = inference(image_array, "Yes", a, b)[-1]
images_with_gradcam.append((visualization, label))
return {
grad1_block: gr.update(visible=True),
gallery3: images_with_gradcam[:n]
}
def change_grad_view(choice):
if choice == "Yes":
return grad_block.update(visible=True)
else:
return grad_block.update(visible=False)
def show_misclassified_images(n, grad_cam, a, b):
images = [
('misclassified_images/misclassified_0_GT_bird_Pred_cat.jpg', 'bird/cat'),
('misclassified_images/misclassified_1_GT_car_Pred_truck.jpg', 'car/truck'),
('misclassified_images/misclassified_2_GT_plane_Pred_truck.jpg', 'plane/truck'),
('misclassified_images/misclassified_3_GT_deer_Pred_dog.jpg', 'deer/dog'),
('misclassified_images/misclassified_4_GT_frog_Pred_cat.jpg', 'frog/cat'),
('misclassified_images/misclassified_5_GT_cat_Pred_dog.jpg', 'cat/dog'),
('misclassified_images/misclassified_6_GT_cat_Pred_dog.jpg', 'cat/dog'),
('misclassified_images/misclassified_7_GT_dog_Pred_horse.jpg', 'dog/horse'),
('misclassified_images/misclassified_8_GT_bird_Pred_dog.jpg', 'bird/dog'),
('misclassified_images/misclassified_9_GT_ship_Pred_plane.jpg', 'ship/plane')
]
images_with_gradcam = []
for image_path, label in images:
image = Image.open(image_path)
image_array = np.asarray(image)
visualization = inference(image_array, "Yes", a, b)[-1]
images_with_gradcam.append((visualization, label))
if grad_cam == "Yes":
return {
miscls1_block: gr.update(visible=True),
gallery: images_with_gradcam[:n]
}
return {
miscls1_block: gr.update(visible=True),
gallery: images[:n]
}
def change_miscls_view(choice):
if choice == "Yes":
return miscls_block.update(visible=True)
else:
return miscls_block.update(visible=False)
def change_textbox(choice):
if choice == "Yes":
return [gr.Slider.update(visible=True), gr.Slider.update(visible=True)]
else:
return [gr.Slider.update(visible=False), gr.Slider.update(visible=False)]
def update_num_top_classes(input_img, input_slider_grad_or_not, transparency, target_layer_number, topk):
output_classes.num_top_classes=topk
return inference(input_img, input_slider_grad_or_not, transparency, target_layer_number, topk)[0]
def change_mygrad_view(choice):
if choice == "Yes":
return grad_or_not.update(visible=True)
else:
return grad_or_not.update(visible=False)
with gr.Blocks(theme='xiaobaiyuan/theme_brief') as demo:
gr.Markdown("""
# CustomResNet model with GradCAM
### A simple Gradio interface to infer on CustomResNet model and get GradCAM results
""")
#gr.Markdown("# Model")
gr.Markdown("## Grad-CAM Images")
with gr.Row():
grad_yes_no = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to see GradCAM images")
with gr.Row(visible=False) as grad_block:
with gr.Column(scale=1):
input_grad = gr.Slider(1, 10, value = 5, step=1, label="Number of GradCAM images to view")
input_overlay = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to configure gradcam")
with gr.Row():
clear_btn3 = gr.ClearButton()
submit_btn3 = gr.Button("Submit")
with gr.Column(scale=1):
input_slider1 = gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM", interactive=True, visible=False)
input_slider2 = gr.Slider(1, 3, value = 3, step=1, label="Which Layer?", interactive=True, visible=False)
with gr.Row(visible=False) as grad1_block:
gallery3 = gr.Gallery(
label="GradCAM images", show_label=True, elem_id="gallery3"
).style(columns=[4], rows=[3], object_fit="contain", height="auto")
submit_btn3.click(fn=show_gradcam_images, inputs=[input_grad, input_slider1, input_slider2], outputs = [grad1_block, gallery3])
clear_btn3.click(lambda: [None, None, None, None, None], outputs=[input_grad, input_grad, input_slider1, input_slider2, gallery3])
input_overlay.change(fn=change_textbox, inputs=input_overlay, outputs=[input_slider1, input_slider2])
grad_yes_no.change(fn=change_grad_view, inputs=grad_yes_no, outputs=[grad_block])
###############################################
gr.Markdown("## Misclassification Images")
with gr.Row():
miscls_yes_no = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to see misclassified images")
with gr.Row(visible=False) as miscls_block:
with gr.Column(scale=1):
input_miscn = gr.Slider(1, 10, value = 3, step=1, label="Number of misclassified images to view")
with gr.Column(scale=1):
input_grad2 = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to overlay gradcam")
input_slider21 = gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM", interactive=True, visible=False)
input_slider22 = gr.Slider(1, 3, value = 3, step=1, label="Which Layer?", interactive=True, visible=False)
with gr.Row():
clear_btn2 = gr.ClearButton()
submit_btn2 = gr.Button("Submit")
with gr.Column(visible=False) as miscls1_block:
gallery = gr.Gallery(
label="Misclassified images", show_label=True, elem_id="gallery"
).style(columns=[4], rows=[3], object_fit="contain", height="auto")
submit_btn2.click(fn=show_misclassified_images, inputs=[input_miscn, input_grad2, input_slider21, input_slider22], outputs = [miscls1_block, gallery])
clear_btn2.click(lambda: [None, None, None, None, None], outputs=[input_miscn, input_grad, input_slider21, input_slider22, gallery])
input_grad2.change(fn=change_textbox, inputs=input_grad2, outputs=[input_slider21, input_slider22])
miscls_yes_no.change(fn=change_miscls_view, inputs=miscls_yes_no, outputs=[miscls_block])
###############################################
gr.Markdown("## Input Interface ")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(shape=(32, 32), label="Input Image")
input_topk = gr.Slider(1, 10, value = 3, step=1, label="Top N Classes")
input_slider_grad_or_not = gr.Radio(choices = ["Yes", "No"], value="No", label="Do you want to overlay GradCAM output")
with gr.Row():
clear_btn = gr.ClearButton()
submit_btn = gr.Button("Submit")
with gr.Column(visible=False) as grad_or_not:
input_slider1 = gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM")
input_slider2 = gr.Slider(1, 3, value = 3, step=1, label="Which Layer?")
with gr.Column(scale=1):
output_classes = gr.Label(num_top_classes=3)
output_image = gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)
gr.Markdown("## Examples")
gr.Examples(
examples=[["examples/car.jpg", "Yes", 0.5, 3, 3],
["examples/cat.jpg", "Yes", 0.7, 2, 5],
["examples/dog.jpg", "Yes", 0.9, 1, 4],
["examples/truck.jpg", "Yes", 0.3, 1, 7],
["examples/horse.jpg", "Yes", 0.7, 3, 4],
["examples/frog.jpg", "Yes", 0.8, 3, 6],
["examples/bird.jpg", "Yes", 0.9, 1, 7],
["examples/deer.jpg", "Yes", 0.3, 1, 3],
["examples/plane.jpg", "Yes", 0.4, 3, 4],
["examples/ship.jpg", "Yes", 0.5, 2, 5]
],
inputs=[input_image,input_slider_grad_or_not,input_slider1,input_slider2, input_topk],
outputs=[output_classes,output_image],
fn=inference,
cache_examples=True,
)
submit_btn.click(fn=inference, inputs=[input_image, input_slider_grad_or_not, input_slider1, input_slider2, input_topk], outputs=[output_classes, output_image])
clear_btn.click(lambda: [None, "No", 0.5, 3, None, None, 3], outputs=[input_image, input_slider_grad_or_not, input_slider1, input_slider2, output_classes, output_image])
input_topk.change(update_num_top_classes, inputs=[input_image, input_slider_grad_or_not, input_slider1, input_slider2, input_topk], outputs=[output_classes])
input_slider_grad_or_not.change(fn=change_mygrad_view, inputs=input_slider_grad_or_not, outputs=[grad_or_not])
if __name__ == "__main__":
demo.launch(debug=True)
|