File size: 5,641 Bytes
72eeb6e
 
 
 
ef68ae3
 
72eeb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef68ae3
72eeb6e
 
 
 
 
 
ef68ae3
72eeb6e
ef68ae3
72eeb6e
 
ef68ae3
 
 
 
 
72eeb6e
ef68ae3
 
 
72eeb6e
ef68ae3
72eeb6e
 
ef68ae3
 
 
 
 
72eeb6e
 
ef68ae3
 
 
72eeb6e
 
 
 
 
 
 
 
 
ef68ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72eeb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef68ae3
72eeb6e
 
 
 
 
ef68ae3
 
 
 
 
72eeb6e
 
ef68ae3
 
72eeb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from torchvision.datasets.cifar import CIFAR10
import torch
from torch.optim.lr_scheduler import OneCycleLR
from torch_lr_finder import LRFinder
import torch.nn as nn
import torch.nn.functional as F
import os
import pytorch_lightning as pl
import albumentations as A
from torchvision.datasets import CIFAR10
from torchvision import transforms
from albumentations.pytorch.transforms import ToTensorV2
import numpy as np
from pytorch_lightning import LightningModule, Trainer
from torch.utils.data import DataLoader, random_split
from torchmetrics import Accuracy
from torchvision import transforms

PATH_DATASETS = os.environ.get("PATH_DATASETS", ".")
class CustomResNet(LightningModule):
    def __init__(self, num_classes=10, data_dir=PATH_DATASETS, hidden_size=16, learning_rate=0.05):
        super(CustomResNet, self).__init__()
        self.save_hyperparameters()
        #self.custom_block = CustomBlock(in_channels=64, out_channels=128)
       # Set our init args as class attributes

        # loading the dataset
        self.EPOCHS = 24
        self.num_classes=num_classes
        self.data_dir = data_dir
        self.hidden_size = hidden_size
        self.learning_rate = learning_rate

        self.prep_layer = nn.Sequential(
            nn.Conv2d(
                in_channels=3,
                out_channels=64,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=False,
            ),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )

        self.layer_1 = nn.Sequential(
            nn.Conv2d(
                in_channels=64,
                out_channels=128,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=False,
            ),
            nn.MaxPool2d(kernel_size=2),
            nn.BatchNorm2d(128),
            nn.ReLU(),
        )

        self.resblock1 = nn.Sequential(
              nn.Conv2d(128, 128, kernel_size=3, stride=1, bias=False, padding=1),
              nn.BatchNorm2d(128),
              nn.ReLU(),
              nn.Conv2d(128, 128, kernel_size=3, stride=1, bias=False, padding=1),
              nn.BatchNorm2d(128),
              nn.ReLU()
              )


        self.layer_2 = nn.Sequential(
            nn.Conv2d(
                in_channels=128,
                out_channels=256,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=False,
            ),
            nn.MaxPool2d(kernel_size=2),
            nn.BatchNorm2d(256),
            nn.ReLU(),
        )

        self.layer_3 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=3, stride=1, bias=False, padding=1),
            nn.MaxPool2d(kernel_size = 2, stride = 2),
            nn.BatchNorm2d(512),
            nn.ReLU()
            )
        self.resblock2 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, stride=1, bias=False, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, bias=False, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU()
            )

        self.maxpoollayer = nn.Sequential(nn.MaxPool2d(kernel_size=4,stride = 4))

        self.fclayer = nn.Linear(512, self.num_classes)
    # def loss_function(self, pred, target):
    #     criterion = torch.nn.CrossEntropyLoss()
        
    #     return criterion(pred, target)


    def forward(self, x):
        x = self.prep_layer(x)
        x = self.layer_1(x)
        r1 = self.resblock1(x)
        x = x + r1
        x = self.layer_2(x)
        x = self.layer_3(x)
        r2 = self.resblock2(x)
        x = x + r2
        x = self.maxpoollayer(x)
        x = x.view((x.shape[0],-1))
        x = self.fclayer(x)

        return F.log_softmax(x,dim=-1)
    # def get_loss_accuracy(self, batch):
    #     images, labels = batch
    #     predictions = self(images)
    #     predicted_classes = torch.argmax(predictions, dim=1)
    #     accuracy = (predicted_classes == labels).float().mean()
    #     loss = self.loss_function(predictions, labels)
        
    #     return loss, accuracy * 100
    
    

    # def training_step(self, batch, batch_idx):
    #     loss, accuracy = self.get_loss_accuracy(batch)
    #     self.log("loss/train", loss, on_epoch=True, prog_bar=True, logger=True)
    #     self.log("acc/train", accuracy, on_epoch=True, prog_bar=True, logger=True)
        
    #     return loss

    # def validation_step(self, batch, batch_idx):
    #     loss, accuracy = self.get_loss_accuracy(batch)
    #     self.log("loss/val", loss, on_epoch=True, prog_bar=True, logger=True)
    #     self.log("acc/val", accuracy, on_epoch=True, prog_bar=True, logger=True)

    #     return loss

    # def test_step(self, batch, batch_idx):
    #     loss = self.validation_step(batch, batch_idx)

    #     return loss

    # def configure_optimizers(self):
    #     LEARNING_RATE=0.03
    #     WEIGHT_DECAY=0
    #     optimizer = torch.optim.Adam(self.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)

    #     self.trainer.fit_loop.setup_data()
    #     dataloader = self.trainer.train_dataloader

    #     lr_scheduler = OneCycleLR(
    #       optimizer,
    #       max_lr=4.79E-02,
    #       steps_per_epoch=len(dataloader),
    #       epochs=24,
    #       pct_start=5/24,
    #       div_factor=100,
    #       three_phase=False,
    #       final_div_factor=100,
    #       anneal_strategy='linear'
    #     )

    #     scheduler = {"scheduler": lr_scheduler, "interval" : "step"}

    #     return [optimizer], [scheduler]