Spaces:
Sleeping
Sleeping
import torch | |
from torchvision import transforms | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
from custom_resnet import * | |
#from resnet import ResNet18 # Assuming you have a custom ResNet18 implementation | |
def load_custom_state_dict(model, state_dict): | |
model_state_dict = model.state_dict() | |
# Filter out unexpected keys | |
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict} | |
# Update the model's state_dict | |
model_state_dict.update(filtered_state_dict) | |
# Load the updated state_dict to the model | |
model.load_state_dict(model_state_dict) | |
model = CustomResNet() # Replace this with your CustomResNet if necessary | |
# Load the state_dict using the custom function | |
state_dict = torch.load("model_pth.ckpt", map_location=torch.device('cpu')) | |
load_custom_state_dict(model, state_dict['state_dict']) | |
inv_normalize = transforms.Normalize( | |
mean=[-0.494 / 0.2470, -0.4822 / 0.2435, -0.4465 / 0.2616], | |
std=[1 / 0.2470, 1 / 0.2435, 1 / 0.2616] | |
) | |
classes = ('plane', 'car', 'bird', 'cat', 'deer', | |
'dog', 'frog', 'horse', 'ship', 'truck') | |
def inference(input_img, transparency=0.5, target_layer_number=-1, num_images=1, num_top_classes=3): | |
transform = transforms.ToTensor() | |
org_img = input_img | |
input_img = transform(input_img) | |
input_img = input_img.unsqueeze(0) | |
outputs = model(input_img) | |
softmax = torch.nn.Softmax(dim=1) | |
probabilities = softmax(outputs) | |
confidences = {classes[i]: float(probabilities[0, i]) for i in range(10)} | |
_, prediction = torch.max(outputs, 1) | |
# Get GradCAM for the specified target_layer_number | |
target_layers = [model.layer_2[target_layer_number]] | |
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) | |
grayscale_cam = cam(input_tensor=input_img, targets=None) | |
grayscale_cam = grayscale_cam[0, :] | |
img = input_img.squeeze(0) | |
img = inv_normalize(img) | |
rgb_img = np.transpose(img, (1, 2, 0)) | |
rgb_img = rgb_img.numpy() | |
# Convert org_img (PIL image) to a NumPy array before performing arithmetic operations | |
visualization = show_cam_on_image(org_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency) | |
# Create a list to store multiple visualizations | |
# # Generate multiple GradCAM visualizations if num_images > 1 | |
# for _ in range(num_images - 1): | |
# # Get GradCAM for different target_layer_number if provided by the user | |
# if target_layer_number >= -1: | |
# target_layers = [model.layer_2[target_layer_number]] | |
# cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) | |
# grayscale_cam = cam(input_tensor=input_img, targets=None) | |
# grayscale_cam = grayscale_cam[0, :] | |
# visualization = show_cam_on_image(org_img / 255, grayscale_cam, use_rgb=True, image_weight=transparency) | |
# visualizations.append(visualization) | |
# Get top classes based on user input (up to a maximum of 10) | |
top_classes = {k: v for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)[:min(num_top_classes, 10)]} | |
return top_classes, visualization | |
title = "CIFAR10 trained on ResNet18 Model with GradCAM" | |
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" | |
examples = [["car_1.jpg",0.5,-1],["car_2.jpg",0.5,-1],["cat_1.jpg",0.5,-1],["cat_2.jpg",0.5,-1],["dog_1.jpg",0.5,-1],["dog_2.jpg",0.5,-1],["frog_1.jpg",0.5,-1],["frog_2.jpg",0.5,-1],["horse_1.jpg",0.5,-1],["horse_2.jpg",0.5,-1]] | |
demo = gr.Interface( | |
inference, | |
inputs = [gr.Image(shape=(32, 32), label="Input Image"), | |
gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"), | |
gr.Slider(-2, -1, value=-2, step=1, label="Which Layer?"), | |
gr.Number(default=1, label="Number of GradCAM Images to Show"), | |
gr.Slider(1, 10, value=3, step=1, label="Number of Top Classes to Show")], | |
outputs = [gr.Label(num_top_classes=5), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)], | |
title = title, | |
description = description, | |
examples = examples, | |
) | |
demo.launch() |